189 8069 5689

离散函数python 离散函数图像

Python pandas用法

在Python中,pandas是基于NumPy数组构建的,使数据预处理、清洗、分析工作变得更快更简单。pandas是专门为处理表格和混杂数据设计的,而NumPy更适合处理统一的数值数组数据。

创新互联建站专注为客户提供全方位的互联网综合服务,包含不限于成都网站设计、网站制作、洛江网络推广、微信平台小程序开发、洛江网络营销、洛江企业策划、洛江品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联建站为所有大学生创业者提供洛江建站搭建服务,24小时服务热线:13518219792,官方网址:www.cdcxhl.com

使用下面格式约定,引入pandas包:

pandas有两个主要数据结构:Series和DataFrame。

Series是一种类似于一维数组的对象,它由 一组数据 (各种NumPy数据类型)以及一组与之相关的 数据标签(即索引) 组成,即index和values两部分,可以通过索引的方式选取Series中的单个或一组值。

pd.Series(list,index=[ ]) ,第二个参数是Series中数据的索引,可以省略。

Series类型索引、切片、运算的操作类似于ndarray,同样的类似Python字典类型的操作,包括保留字in操作、使用.get()方法。

Series和ndarray之间的主要区别在于Series之间的操作会根据索引自动对齐数据。

DataFrame是一个表格型的数据类型,每列值类型可以不同,是最常用的pandas对象。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。

pd.DataFrame(data,columns = [ ],index = [ ]) :columns和index为指定的列、行索引,并按照顺序排列。

如果创建时指定了columns和index索引,则按照索引顺序排列,并且如果传入的列在数据中找不到,就会在结果中产生缺失值:

数据索引 :Series和DataFrame的索引是Index类型,Index对象是不可修改,可通过索引值或索引标签获取目标数据,也可通过索引使序列或数据框的计算、操作实现自动化对齐。索引类型index的常用方法:

重新索引 :能够改变、重排Series和DataFrame索引,会创建一个新对象,如果某个索引值当前不存在,就引入缺失值。

df.reindex(index, columns ,fill_value, method, limit, copy ) :index/columns为新的行列自定义索引;fill_value为用于填充缺失位置的值;method为填充方法,ffill当前值向前填充,bfill向后填充;limit为最大填充量;copy 默认True,生成新的对象,False时,新旧相等不复制。

删除指定索引 :默认返回的是一个新对象。

.drop() :能够删除Series和DataFrame指定行或列索引。

删除一行或者一列时,用单引号指定索引,删除多行时用列表指定索引。

如果删除的是列索引,需要增加axis=1或axis='columns'作为参数。

增加inplace=True作为参数,可以就地修改对象,不会返回新的对象。

在pandas中,有多个方法可以选取和重新组合数据。对于DataFrame,表5-4进行了总结

适用于Series和DataFrame的基本统计分析函数 :传入axis='columns'或axis=1将会按行进行运算。

.describe() :针对各列的多个统计汇总,用统计学指标快速描述数据的概要。

.sum() :计算各列数据的和

.count() :非NaN值的数量

.mean( )/.median() :计算数据的算术平均值、算术中位数

.var()/.std() :计算数据的方差、标准差

.corr()/.cov() :计算相关系数矩阵、协方差矩阵,是通过参数对计算出来的。Series的corr方法用于计算两个Series中重叠的、非NA的、按索引对齐的值的相关系数。DataFrame的corr和cov方法将以DataFrame的形式分别返回完整的相关系数或协方差矩阵。

.corrwith() :利用DataFrame的corrwith方法,可以计算其列或行跟另一个Series或DataFrame之间的相关系数。传入一个Series将会返回一个相关系数值Series(针对各列进行计算),传入一个DataFrame则会计算按列名配对的相关系数。

.min()/.max() :计算数据的最小值、最大值

.diff() :计算一阶差分,对时间序列很有效

.mode() :计算众数,返回频数最高的那(几)个

.mean() :计算均值

.quantile() :计算分位数(0到1)

.isin() :用于判断矢量化集合的成员资格,可用于过滤Series中或DataFrame列中数据的子集

适用于Series的基本统计分析函数,DataFrame[列名]返回的是一个Series类型。

.unique() :返回一个Series中的唯一值组成的数组。

.value_counts() :计算一个Series中各值出现的频率。

.argmin()/.argmax() :计算数据最大值、最小值所在位置的索引位置(自动索引)

.idxmin()/.idxmax() :计算数据最大值、最小值所在位置的索引(自定义索引)

pandas提供了一些用于将表格型数据读取为DataFrame对象的函数。下表对它们进行了总结,其中read_csv()、read_table()、to_csv()是用得最多的。

在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载、清理、转换以及重塑。

在许多数据分析工作中,缺失数据是经常发生的。对于数值数据,pandas使用浮点值NaN(np.nan)表示缺失数据,也可将缺失值表示为NA(Python内置的None值)。

替换值

.replace(old, new) :用新的数据替换老的数据,如果希望一次性替换多个值,old和new可以是列表。默认会返回一个新的对象,传入inplace=True可以对现有对象进行就地修改。

删除重复数据

利用函数或字典进行数据转换

df.head():查询数据的前五行

df.tail():查询数据的末尾5行

pandas.cut()

pandas.qcut() 基于分位数的离散化函数。基于秩或基于样本分位数将变量离散化为等大小桶。

pandas.date_range() 返回一个时间索引

df.apply() 沿相应轴应用函数

Series.value_counts() 返回不同数据的计数值

df.aggregate()

df.reset_index() 重新设置index,参数drop = True时会丢弃原来的索引,设置新的从0开始的索引。常与groupby()一起用

numpy.zeros()

python 离散型数据怎么量化

python 离散型数据量化的方法可以采用变量转换方法来解决,分类数据和连续数据需要参与模型计算,并且通常会转换为数值数据。

当然,某些算法允许这些数据直接参与计算,例如分类算法中的决策树和关联规则。将非数字数据转换为数字数据的最佳方法是将所有类别或有序变量的范围从一列多值形式转换为仅包含真值的多列。可以将True值传递给True,False或0、1。这种符号转换方法有时称为真值转换。

具体代码是:

import pandas as pddata = [.

['yellow', 'S', 10.1, 'class1'].

['red', 'M', 13.5, 'class1'].

['red', 'M', 15.1, 'class2'].

['blue', 'XL', 15.3, 'class2'.

df = pd.DataFrame(.

data,columns=['color', 'size', 'prize', 'class'].

python 离散型数据用连续数据处理的方法是:

1、等宽法:若数据区间为0~20,设置箱子个数为4个,则等宽法会将数据装入4个箱子:[0,5],(5,10],(10,15],(15,20],并且可以设置每个箱子的名字,如1、2、3、4。

等宽法缺点是分箱结果会受到最值影响。并且需要人为指定箱子个数,比较依赖于经验。分箱结果会直接影响后续分类、聚类的结果。

2、等频法:等频法是指将一组数据分解成n个部分后,每个部分的记录数量是一样多的。等频法常用pandas库中的qcut()函数进行处理。

用python求离散变量的期望值!

离散型很简单,一个一个列出来就可以了

连续型的话,也不难,看具体的吧

比如两个连续型X、Y

现在条件可以任意给,比如知道X、Y的密度函数,那直接用xy乘以联合密度函数的定积分就可以了。

如何在Python中实现这五类强大的概率分布

R编程语言已经成为统计分析中的事实标准。但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易。我要使用Python实现一些离散和连续的概率分布。虽然我不会讨论这些分布的数学细节,但我会以链接的方式给你一些学习这些统计学概念的好资料。在讨论这些概率分布之前,我想简单说说什么是随机变量(random variable)。随机变量是对一次试验结果的量化。

举个例子,一个表示抛硬币结果的随机变量可以表示成

Python

1

2

X = {1 如果正面朝上,

2 如果反面朝上}

随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性。随机变量的每个可能取值的都与一个概率相关联。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probability distributrion)。

我鼓励大家仔细研究一下scipy.stats模块。

概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。

离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。

连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。

若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频。

二项分布(Binomial Distribution)

服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p。

E(X) = np, Var(X) = np(1−p)

如果你想知道每个函数的原理,你可以在IPython笔记本中使用help file命令。 E(X)表示分布的期望或平均值。

键入stats.binom?了解二项分布函数binom的更多信息。

二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?

假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的。我定义掷硬币的所有可能结果为k = np.arange(0,11):你可能观测到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf计算每次观测的概率质量函数。它返回一个含有11个元素的列表(list),这些元素表示与每个观测相关联的概率值。

您可以使用.rvs函数模拟一个二项随机变量,其中参数size指定你要进行模拟的次数。我让Python返回10000个参数为n和p的二项式随机变量。我将输出这些随机变量的平均值和标准差,然后画出所有的随机变量的直方图。

泊松分布(Poisson Distribution)

一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数。参数λ告诉你该事件发生的比率。随机变量X的平均值和方差都是λ。

E(X) = λ, Var(X) = λ

泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?

让我们考虑这个平均每天发生2起事故的例子。泊松分布的实现和二项分布有些类似,在泊松分布中我们需要指定比率参数。泊松分布的输出是一个数列,包含了发生0次、1次、2次,直到10次事故的概率。我用结果生成了以下图片。

你可以看到,事故次数的峰值在均值附近。平均来说,你可以预计事件发生的次数为λ。尝试不同的λ和n的值,然后看看分布的形状是怎么变化的。

现在我来模拟1000个服从泊松分布的随机变量。

正态分布(Normal Distribution)

正态分布是一种连续分布,其函数可以在实线上的任何地方取值。正态分布由两个参数描述:分布的平均值μ和方差σ2 。

E(X) = μ, Var(X) = σ2

正态分布的取值可以从负无穷到正无穷。你可以注意到,我用stats.norm.pdf得到正态分布的概率密度函数。

β分布(Beta Distribution)

β分布是一个取值在 [0, 1] 之间的连续分布,它由两个形态参数α和β的取值所刻画。

β分布的形状取决于α和β的值。贝叶斯分析中大量使用了β分布。

当你将参数α和β都设置为1时,该分布又被称为均匀分布(uniform distribution)。尝试不同的α和β取值,看看分布的形状是如何变化的。

指数分布(Exponential Distribution)

指数分布是一种连续概率分布,用于表示独立随机事件发生的时间间隔。比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基百科新条目出现的时间间隔等等。

我将参数λ设置为0.5,并将x的取值范围设置为 $[0, 15]$ 。

接着,我在指数分布下模拟1000个随机变量。scale参数表示λ的倒数。函数np.std中,参数ddof等于标准偏差除以 $n-1$ 的值。

结语(Conclusion)

概率分布就像盖房子的蓝图,而随机变量是对试验事件的总结。我建议你去看看哈佛大学数据科学课程的讲座,Joe Blitzstein教授给了一份摘要,包含了你所需要了解的关于统计模型和分布的全部。

python如何剔除掉一堆数据中离散度比较大的数据

python剔除掉一堆数据中离散度比较大的数据步骤如下:

1、创建DataFrame:可以使用Pandas的DataFrame()函数创建一个DataFrame,将数据存入DataFrame中。

2、计算每个特征的IQR值:可以使用Pandas的describe()函数,计算每个特征列的四分位数,再计算出每列IQR值。

3、计算每个特征的离散度:可以根据每列的最小值和最大值,减去其最低四分位数和最高四分位数,来计算每个特征的离散度。

4、筛选出离散度比较大的数据:可以根据不同的阈值,筛选出离散度比较大的数据,并剔除掉这部分数据。

python 如何对离散点求导 差分法的命令是什么

基于文本文档(Markdown) 设想好需要的基本需要的表、字段、类型;

使用 Rails Migration 随着功能的开发逐步创建表;

随着细节功能的开发、需求,逐步增加字段,删除字段,或者调整字段类型;

第一个 Release 的时候清理 Migrations 合并成一个;

随着后期的改动,逐步增加、修改、删除字段或表。

基本上我的所有项目都是这么搞的,这和项目是否复杂无关。


名称栏目:离散函数python 离散函数图像
文章位置:http://cdxtjz.com/article/dochpgj.html

其他资讯