189 8069 5689

python爬虫函数详解 python爬虫方法

python 爬虫

验证码(CAPTCHA)全称为全自动区分计算机和人类的公开图灵测试(Completely Automated Public Turing test to tell Computersand Humans Apart)。从其全称可以看出,验证码用于测试用户是真实的人类还是计算机机器人。

站在用户的角度思考问题,与客户深入沟通,找到新会网站设计与新会网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都网站建设、成都网站制作、企业官网、英文网站、手机端网站、网站推广、国际域名空间、虚拟主机、企业邮箱。业务覆盖新会地区。

1.获得验证码图片

每次加载注册网页都会显示不同的验证验图像,为了了解表单需要哪些参数,我们可以复用上一章编写的parse_form()函数。

import cookielib,urllib2,pprint import form REGISTER_URL = '' cj=cookielib.CookieJar() opener=urllib2.build_opener(urllib2.HTTPCookieProcessor(cj)) html=opener.open(REGISTER_URL).read() form=form.parse_form(html) pprint.pprint(form)

{'_formkey': 'a67cbc84-f291-4ecd-9c2c-93937faca2e2', '_formname': 'register', '_next': '/places/default/index', 'email': '', 'first_name': '', 'last_name': '', 'password': '', 'password_two': '', 'recaptcha_response_field': None} 123456789101112131415161718

上面recaptcha_response_field是存储验证码的值,其值可以用Pillow从验证码图像获取出来。先安装pip install Pillow,其它安装Pillow的方法可以参考 。Pillow提价了一个便捷的Image类,其中包含了很多用于处理验证码图像的高级方法。下面的函数使用注册页的HTML作为输入参数,返回包含验证码图像的Image对象。

import lxml.html from io import BytesIO from PIL import Image tree=lxml.html.fromstring(html) print tree

Element html at 0x7f8b006ba890 img_data_all=tree.cssselect('div#recaptcha img')[0].get('src') print img_data_all



...

rkJggg== img_data=img_data_all.partition(',')[2] print img_data

iVBORw0KGgoAAAANSUhEUgAAAQAAAABgCAIAAAB9kzvfAACAtklEQVR4nO29Z5gcZ5ku3F2dc865

...

rkJggg== binary_img_data=img_data.decode('base64') file_like=BytesIO(binary_img_data) print file_like

_io.BytesIO object at 0x7f8aff6736b0 img=Image.open(file_like) print img

PIL.PngImagePlugin.PngImageFile image mode=RGB size=256x96 at 0x7F8AFF5FAC90 12345678910111213141516171819202122232425

在本例中,这是一张进行了Base64编码的PNG图像,这种格式会使用ASCII编码表示二进制数据。我们可以通过在第一个逗号处分割的方法移除该前缀。然后,使用Base64解码图像数据,回到最初的二进制格式。要想加载图像,PIL需要一个类似文件的接口,所以在传给Image类之前,我们以使用了BytesIO对这个二进制数据进行了封装。

完整代码:

# -*- coding: utf-8 -*-form.pyimport urllibimport urllib2import cookielibfrom io import BytesIOimport lxml.htmlfrom PIL import Image

REGISTER_URL = ''#REGISTER_URL = ''def extract_image(html):

tree = lxml.html.fromstring(html)

img_data = tree.cssselect('div#recaptcha img')[0].get('src') # remove data:image/png;base64, header

img_data = img_data.partition(',')[-1] #open('test_.png', 'wb').write(data.decode('base64'))

binary_img_data = img_data.decode('base64')

file_like = BytesIO(binary_img_data)

img = Image.open(file_like) #img.save('test.png')

return imgdef parse_form(html):

"""extract all input properties from the form

"""

tree = lxml.html.fromstring(html)

data = {} for e in tree.cssselect('form input'): if e.get('name'):

data[e.get('name')] = e.get('value') return datadef register(first_name, last_name, email, password, captcha_fn):

cj = cookielib.CookieJar()

opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))

html = opener.open(REGISTER_URL).read()

form = parse_form(html)

form['first_name'] = first_name

form['last_name'] = last_name

form['email'] = email

form['password'] = form['password_two'] = password

img = extract_image(html)#

captcha = captcha_fn(img)#

form['recaptcha_response_field'] = captcha

encoded_data = urllib.urlencode(form)

request = urllib2.Request(REGISTER_URL, encoded_data)

response = opener.open(request)

success = '/user/register' not in response.geturl() #success = '/places/default/user/register' not in response.geturl()

return success12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152

2.光学字符识别验证码

光学字符识别(Optical Character Recognition, OCR)用于图像中抽取文本。本节中,我们将使用开源的Tesseract OCR引擎,该引擎最初由惠普公司开发的,目前由Google主导。Tesseract的安装说明可以从 获取。然后可以使用pip安装其Python封装版本pytesseractpip install pytesseract。

下面我们用光学字符识别图像验证码:

import pytesseract import form img=form.extract_image(html) pytesseract.image_to_string(img)'' 123456

如果直接把验证码原始图像传给pytesseract,一般不能解析出来。这是因为Tesseract是抽取更加典型的文本,比如背景统一的书页。下面我们进行去除背景噪音,只保留文本部分。验证码文本一般都是黑色的,背景则会更加明亮,所以我们可以通过检查是否为黑色将文本分离出来,该处理过程又被称为阈值化。

img.save('2captcha_1original.png') gray=img.convert('L') gray.save('2captcha_2gray.png') bw=gray.point(lambda x:0 if x1 else 255,'1') bw.save('2captcha_3thresholded.png') 1234567

这里只有阈值小于1的像素(全黑)都会保留下来,分别得到三张图像:原始验证码图像、转换后的灰度图和阈值化处理后的黑白图像。最后我们将阈值化处理后黑白图像再进行Tesseract处理,验证码中的文字已经被成功抽取出来了。

pytesseract.image_to_string(bw)'language' import Image,pytesseract img=Image.open('2captcha_3thresholded.png') pytesseract.image_to_string(img)'language' 123456789

我们通过示例样本测试,100张验证码能正确识别出90张。

import ocr ocr.test_samples()

Accuracy: 90/100 1234

下面是注册账号完整代码:

# -*- coding: utf-8 -*-import csvimport stringfrom PIL import Imageimport pytesseractfrom form import registerdef main():

print register('Wu1', 'Being1', 'Wu_Being001@qq.com', 'example', ocr)def ocr(img):

# threshold the image to ignore background and keep text

gray = img.convert('L') #gray.save('captcha_greyscale.png')

bw = gray.point(lambda x: 0 if x 1 else 255, '1') #bw.save('captcha_threshold.png')

word = pytesseract.image_to_string(bw)

ascii_word = ''.join(c for c in word if c in string.letters).lower() return ascii_wordif __name__ == '__main__':

main()1234567891011121314151617181920212223

我们可以进一步改善OCR性能:

- 实验不同阈值

- 腐蚀阈值文本,突出字符形状

- 调整图像大小

- 根据验证码字体训练ORC工具

- 限制结果为字典单词

如何用Python做爬虫

1)首先你要明白爬虫怎样工作。

想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。

在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。

突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。

好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。

那么在python里怎么实现呢?

很简单

import Queue

initial_page = "初始化页"

url_queue = Queue.Queue()

seen = set()

seen.insert(initial_page)

url_queue.put(initial_page)

while(True): #一直进行直到海枯石烂

if url_queue.size()0:

current_url = url_queue.get() #拿出队例中第一个的url

store(current_url) #把这个url代表的网页存储好

for next_url in extract_urls(current_url): #提取把这个url里链向的url

if next_url not in seen:

seen.put(next_url)

url_queue.put(next_url)

else:

break

写得已经很伪代码了。

所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。

2)效率

如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。

问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。

通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example

注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]

好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。

3)集群化抓取

爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...

那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?

我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)

考虑如何用python实现:

在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。

代码于是写成

#slave.py

current_url = request_from_master()

to_send = []

for next_url in extract_urls(current_url):

to_send.append(next_url)

store(current_url);

send_to_master(to_send)

#master.py

distributed_queue = DistributedQueue()

bf = BloomFilter()

initial_pages = ""

while(True):

if request == 'GET':

if distributed_queue.size()0:

send(distributed_queue.get())

else:

break

elif request == 'POST':

bf.put(request.url)

好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及后处理

虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。

但是如果附加上你需要这些后续处理,比如

有效地存储(数据库应该怎样安排)

有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)

有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...

及时更新(预测这个网页多久会更新一次)

如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,

“路漫漫其修远兮,吾将上下而求索”。

所以,不要问怎么入门,直接上路就好了:)

python爬虫---爬取LOL云顶之弈数据

本来是想爬取之后作最佳羁绊组合推算,但是遇到知识点无法消化(知识图谱),所以暂时先不组合了,实力有限

库的安装

1.requests  #爬取棋子数据

2.json  #棋子数据为js动态,需使用json解析

3.BeautifulSoup

实战前先新建个lol文件夹作为工作目录,并创建子目录data,用于存放数据。

1.爬取数据,新建个py文件,用于爬取云顶数据,命名为data.py

1.1定义个req函数,方便读取。//需设定编码格式,否则会出现乱码

def Re_data(url):

re = requests.get(url)

re.encoding = 'gbk'

data = json.loads(re.text)

return data['data']

1.2定义个Get函数,用于读取数据并使用保存函数进行保存数据,保存格式为json。

def Get_data():

# 获取数据并保存至data目录

base_url = ''

chess = Re_data(base_url + 'chess.js')

race = Re_data(base_url + 'race.js')

job = Re_data(base_url + 'job.js')

equip = Re_data(base_url + 'equip.js')

Save_data(chess,race,job,equip)

1.3定义save函数实现读取的数据进行文件保存,保存目录为工作目录下的data文件夹。

def Save_data(t_chess,t_race,t_job,t_equip):

with open('./data/chess.json','w') as f:

json.dump(t_chess,f,indent='\t')

with open('./data/race.json','w') as f:

json.dump(t_race,f,indent='\t')

with open('./data/job.json','w') as f:

json.dump(t_job,f,indent='\t')

with open('./data/equip.json','w') as f:

json.dump(t_equip,f,indent='\t')

1.4定义主函数main跑起来

if __name__ == '__main__':

start = time.time()

Get_data()

print('运行时间:' + str(time.time() - start) + '秒')

至此,数据爬取完成。

2.种族和职业进行组合。

2.1未完成 //未完成,使用穷举方法进行组合会出现内存不够导致组合失败(for循环嵌套导致数组内存超限)

//待学习,使用知识图谱建立组合优选,可参考:

期间遇到的问题:

1.爬取棋子数据时为动态js加载,需通过json模块的loads方法获取

2.3层for循环嵌套数据量大,导致计算失败,需优化计算方法。


当前文章:python爬虫函数详解 python爬虫方法
文章链接:http://cdxtjz.com/article/doopjip.html

其他资讯