怎么在pandas中使用to_dict方法?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
十多年的崇礼网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整崇礼建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“崇礼网站设计”,“崇礼网站推广”以来,每个客户项目都认真落实执行。简介:pandas 中的to_dict 可以对DataFrame类型的数据进行转换
可以选择六种的转换类型,分别对应于参数 ‘dict', ‘list', ‘series', ‘split', ‘records', ‘index',下面逐一介绍每种的用法
Help on method to_dict in module pandas.core.frame: to_dict(orient='dict') method of pandas.core.frame.DataFrame instance Convert DataFrame to dictionary. Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - dict (default) : dict like {column -> {index -> value}} - list : dict like {column -> [values]} - series : dict like {column -> Series(values)} - split : dict like {index -> [index], columns -> [columns], data -> [values]} - records : list like [{column -> value}, ... , {column -> value}] - index : dict like {index -> {column -> value}} .. versionadded:: 0.17.0 Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. Returns ------- result : dict like {column -> {index -> value}}
1、选择参数orient='dict'
dict也是默认的参数,下面的data数据类型为DataFrame结构, 会形成 {column -> {index -> value}}这样的结构的字典,可以看成是一种双重字典结构
- 单独提取每列的值及其索引,然后组合成一个字典
- 再将上述的列属性作为关键字(key),值(values)为上述的字典
查询方式为 :data_dict[key1][key2]
- data_dict 为参数选择orient='dict'时的数据名
- key1 为列属性的键值(外层)
- key2 为内层字典对应的键值
data Out[9]: pclass age embarked home.dest sex 1086 3rd 31.194181 UNKNOWN UNKNOWN male 12 1st 31.194181 Cherbourg Paris, France female 1036 3rd 31.194181 UNKNOWN UNKNOWN male 833 3rd 32.000000 Southampton Foresvik, Norway Portland, ND male 1108 3rd 31.194181 UNKNOWN UNKNOWN male 562 2nd 41.000000 Cherbourg New York, NY male 437 2nd 48.000000 Southampton Somerset / Bernardsville, NJ female 663 3rd 26.000000 Southampton UNKNOWN male 669 3rd 19.000000 Southampton England male 507 2nd 31.194181 Southampton Petworth, Sussex male In[10]: data_dict=data.to_dict(orient= 'dict') In[11]: data_dict Out[11]: {'age': {12: 31.19418104265403, 437: 48.0, 507: 31.19418104265403, 562: 41.0, 663: 26.0, 669: 19.0, 833: 32.0, 1036: 31.19418104265403, 1086: 31.19418104265403, 1108: 31.19418104265403}, 'embarked': {12: 'Cherbourg', 437: 'Southampton', 507: 'Southampton', 562: 'Cherbourg', 663: 'Southampton', 669: 'Southampton', 833: 'Southampton', 1036: 'UNKNOWN', 1086: 'UNKNOWN', 1108: 'UNKNOWN'}, 'home.dest': {12: 'Paris, France', 437: 'Somerset / Bernardsville, NJ', 507: 'Petworth, Sussex', 562: 'New York, NY', 663: 'UNKNOWN', 669: 'England', 833: 'Foresvik, Norway Portland, ND', 1036: 'UNKNOWN', 1086: 'UNKNOWN', 1108: 'UNKNOWN'}, 'pclass': {12: '1st', 437: '2nd', 507: '2nd', 562: '2nd', 663: '3rd', 669: '3rd', 833: '3rd', 1036: '3rd', 1086: '3rd', 1108: '3rd'}, 'sex': {12: 'female', 437: 'female', 507: 'male', 562: 'male', 663: 'male', 669: 'male', 833: 'male', 1036: 'male', 1086: 'male', 1108: 'male'}}
2、当关键字orient=' list' 时
和1中比较相似,只不过内层变成了一个列表,结构为{column -> [values]}
查询方式为: data_list[keys][index]
data_list 为关键字orient='list' 时对应的数据名
keys 为列属性的键值,如本例中的'age' , ‘embarked'等
index 为整型索引,从0开始到最后
In[19]: data_list=data.to_dict(orient='list') In[20]: data_list Out[20]: {'age': [31.19418104265403, 31.19418104265403, 31.19418104265403, 32.0, 31.19418104265403, 41.0, 48.0, 26.0, 19.0, 31.19418104265403], 'embarked': ['UNKNOWN', 'Cherbourg', 'UNKNOWN', 'Southampton', 'UNKNOWN', 'Cherbourg', 'Southampton', 'Southampton', 'Southampton', 'Southampton'], 'home.dest': ['UNKNOWN', 'Paris, France', 'UNKNOWN', 'Foresvik, Norway Portland, ND', 'UNKNOWN', 'New York, NY', 'Somerset / Bernardsville, NJ', 'UNKNOWN', 'England', 'Petworth, Sussex'], 'pclass': ['3rd', '1st', '3rd', '3rd', '3rd', '2nd', '2nd', '3rd', '3rd', '2nd'], 'sex': ['male', 'female', 'male', 'male', 'male', 'male', 'female', 'male', 'male', 'male']}
3、关键字参数orient='series'
形成结构{column -> Series(values)}
调用格式为:data_series[key1][key2]或data_dict[key1]
data_series 为数据对应的名字
key1 为列属性的键值,如本例中的'age' , ‘embarked'等
key2 使用数据原始的索引(可选)
In[21]: data_series=data.to_dict(orient='series') In[22]: data_series Out[22]: {'age': 1086 31.194181 12 31.194181 1036 31.194181 833 32.000000 1108 31.194181 562 41.000000 437 48.000000 663 26.000000 669 19.000000 507 31.194181 Name: age, dtype: float64, 'embarked': 1086 UNKNOWN 12 Cherbourg 1036 UNKNOWN 833 Southampton 1108 UNKNOWN 562 Cherbourg 437 Southampton 663 Southampton 669 Southampton 507 Southampton Name: embarked, dtype: object, 'home.dest': 1086 UNKNOWN 12 Paris, France 1036 UNKNOWN 833 Foresvik, Norway Portland, ND 1108 UNKNOWN 562 New York, NY 437 Somerset / Bernardsville, NJ 663 UNKNOWN 669 England 507 Petworth, Sussex Name: home.dest, dtype: object, 'pclass': 1086 3rd 12 1st 1036 3rd 833 3rd 1108 3rd 562 2nd 437 2nd 663 3rd 669 3rd 507 2nd Name: pclass, dtype: object, 'sex': 1086 male 12 female 1036 male 833 male 1108 male 562 male 437 female 663 male 669 male 507 male Name: sex, dtype: object}
4、关键字参数orient='split'
形成{index -> [index], columns -> [columns], data -> [values]}的结构,是将数据、索引、属性名单独脱离出来构成字典
调用方式有 data_split[‘index'],data_split[‘data'],data_split[‘columns']
data_split=data.to_dict(orient='split') data_split Out[38]: {'columns': ['pclass', 'age', 'embarked', 'home.dest', 'sex'], 'data': [['3rd', 31.19418104265403, 'UNKNOWN', 'UNKNOWN', 'male'], ['1st', 31.19418104265403, 'Cherbourg', 'Paris, France', 'female'], ['3rd', 31.19418104265403, 'UNKNOWN', 'UNKNOWN', 'male'], ['3rd', 32.0, 'Southampton', 'Foresvik, Norway Portland, ND', 'male'], ['3rd', 31.19418104265403, 'UNKNOWN', 'UNKNOWN', 'male'], ['2nd', 41.0, 'Cherbourg', 'New York, NY', 'male'], ['2nd', 48.0, 'Southampton', 'Somerset / Bernardsville, NJ', 'female'], ['3rd', 26.0, 'Southampton', 'UNKNOWN', 'male'], ['3rd', 19.0, 'Southampton', 'England', 'male'], ['2nd', 31.19418104265403, 'Southampton', 'Petworth, Sussex', 'male']], 'index': [1086, 12, 1036, 833, 1108, 562, 437, 663, 669, 507]}
5、当关键字orient='records' 时
形成[{column -> value}, … , {column -> value}]的结构
整体构成一个列表,内层是将原始数据的每行提取出来形成字典
调用格式为data_records[index][key1]
data_records=data.to_dict(orient='records') data_records Out[41]: [{'age': 31.19418104265403, 'embarked': 'UNKNOWN', 'home.dest': 'UNKNOWN', 'pclass': '3rd', 'sex': 'male'}, {'age': 31.19418104265403, 'embarked': 'Cherbourg', 'home.dest': 'Paris, France', 'pclass': '1st', 'sex': 'female'}, {'age': 31.19418104265403, 'embarked': 'UNKNOWN', 'home.dest': 'UNKNOWN', 'pclass': '3rd', 'sex': 'male'}, {'age': 32.0, 'embarked': 'Southampton', 'home.dest': 'Foresvik, Norway Portland, ND', 'pclass': '3rd', 'sex': 'male'}, {'age': 31.19418104265403, 'embarked': 'UNKNOWN', 'home.dest': 'UNKNOWN', 'pclass': '3rd', 'sex': 'male'}, {'age': 41.0, 'embarked': 'Cherbourg', 'home.dest': 'New York, NY', 'pclass': '2nd', 'sex': 'male'}, {'age': 48.0, 'embarked': 'Southampton', 'home.dest': 'Somerset / Bernardsville, NJ', 'pclass': '2nd', 'sex': 'female'}, {'age': 26.0, 'embarked': 'Southampton', 'home.dest': 'UNKNOWN', 'pclass': '3rd', 'sex': 'male'}, {'age': 19.0, 'embarked': 'Southampton', 'home.dest': 'England', 'pclass': '3rd', 'sex': 'male'}, {'age': 31.19418104265403, 'embarked': 'Southampton', 'home.dest': 'Petworth, Sussex', 'pclass': '2nd', 'sex': 'male'}]
6、当关键字orient='index' 时
形成{index -> {column -> value}}的结构,调用格式正好和'dict' 对应的反过来,请读者自己思考
data_index=data.to_dict(orient='index') data_index Out[43]: {12: {'age': 31.19418104265403, 'embarked': 'Cherbourg', 'home.dest': 'Paris, France', 'pclass': '1st', 'sex': 'female'}, 437: {'age': 48.0, 'embarked': 'Southampton', 'home.dest': 'Somerset / Bernardsville, NJ', 'pclass': '2nd', 'sex': 'female'}, 507: {'age': 31.19418104265403, 'embarked': 'Southampton', 'home.dest': 'Petworth, Sussex', 'pclass': '2nd', 'sex': 'male'}, 562: {'age': 41.0, 'embarked': 'Cherbourg', 'home.dest': 'New York, NY', 'pclass': '2nd', 'sex': 'male'}, 663: {'age': 26.0, 'embarked': 'Southampton', 'home.dest': 'UNKNOWN', 'pclass': '3rd', 'sex': 'male'}, 669: {'age': 19.0, 'embarked': 'Southampton', 'home.dest': 'England', 'pclass': '3rd', 'sex': 'male'}, 833: {'age': 32.0, 'embarked': 'Southampton', 'home.dest': 'Foresvik, Norway Portland, ND', 'pclass': '3rd', 'sex': 'male'}, 1036: {'age': 31.19418104265403, 'embarked': 'UNKNOWN', 'home.dest': 'UNKNOWN', 'pclass': '3rd', 'sex': 'male'}, 1086: {'age': 31.19418104265403, 'embarked': 'UNKNOWN', 'home.dest': 'UNKNOWN', 'pclass': '3rd', 'sex': 'male'}, 1108: {'age': 31.19418104265403, 'embarked': 'UNKNOWN', 'home.dest': 'UNKNOWN', 'pclass': '3rd', 'sex': 'male'}}
关于怎么在pandas中使用to_dict方法问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。