今天就跟大家聊聊有关如何找出两个排序数组的中位数,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
创新互联专注于合作企业网站建设,响应式网站设计,商城网站建设。合作网站建设公司,为合作等地区提供建站服务。全流程按需策划,专业设计,全程项目跟踪,创新互联专业和态度为您提供的服务
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 。
请找出这两个有序数组的中位数。要求算法的时间复杂度为 O(log (m+n)) 。
示例 1:
nums1 = [1, 3]
nums2 = [2]
中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
中位数是 (2 + 3)/2 = 2.5
1. Swift 语言
// 方式一 class Solution { func findMedianSortedArrays(nums1: [Int], _ nums2: [Int]) -> Double { let m = nums1.count let n = nums2.count if m > n { return findMedianSortedArrays(nums2, nums1) } var halfLength: Int = (m + n + 1) >> 1 var b = 0, e = m var maxOfLeft = 0 var minOfRight = 0 while b <= e { let mid1 = (b + e) >> 1 let mid2 = halfLength - mid1 if mid1 > 0 && mid2 < n && nums1[mid1 - 1] > nums2[mid2] { e = mid1 - 1 } else if mid2 > 0 && mid1 < m && nums1[mid1] < nums2[mid2 - 1] { b = mid1 + 1 } else { if mid1 == 0 { maxOfLeft = nums2[mid2 - 1] } else if mid2 == 0 { maxOfLeft = nums1[mid1 - 1] } else { maxOfLeft = max(nums1[mid1 - 1], nums2[mid2 - 1]) } if (m + n) % 2 == 1 { return Double(maxOfLeft) } if mid1 == m { minOfRight = nums2[mid2] } else if mid2 == n { minOfRight = nums1[mid1] } else { minOfRight = min(nums1[mid1], nums2[mid2]) } break } } return Double(maxOfLeft + minOfRight) / 2.0 } } // 方式二 class MedianTwoSortedArrays { func findMedianSortedArrays(_ nums1: [Int], _ nums2: [Int]) -> Double { let m = nums1.count let n = nums2.count return (findKth(nums1, nums2, (m + n + 1) / 2) + findKth(nums1, nums2, (m + n + 2) / 2)) / 2 } private func findKth(_ nums1: [Int], _ nums2: [Int], _ index: Int) -> Double { let m = nums1.count let n = nums2.count guard m <= n else { return findKth(nums2, nums1, index) } guard m != 0 else { return Double(nums2[index - 1]) } guard index != 1 else { return Double(min(nums1[0], nums2[0])) } let i = min(index / 2, m) let j = min(index / 2, n) if nums1[i - 1] < nums2[j - 1] { return findKth(Array(nums1[i..2. Python 语言
// 方式一 class Solution(object): def findMedianSortedArrays(self, nums1, nums2): a, b = sorted((nums1, nums2), key=len) m, n = len(a), len(b) after = (m + n - 1) / 2 lo, hi = 0, m while lo < hi: i = (lo + hi) / 2 if after-i-1 < 0 or a[i] >= b[after-i-1]: hi = i else: lo = i + 1 i = lo nextfew = sorted(a[i:i+2] + b[after-i:after-i+2]) return (nextfew[0] + nextfew[1 - (m+n)%2]) / 2.0 // 方式二 def median(A, B): m, n = len(A), len(B) if m > n: A, B, m, n = B, A, n, m if n == 0: raise ValueError imin, imax, half_len = 0, m, (m + n + 1) / 2 while imin <= imax: i = (imin + imax) / 2 j = half_len - i if i < m and B[j-1] > A[i]: # i is too small, must increase it imin = i + 1 elif i > 0 and A[i-1] > B[j]: # i is too big, must decrease it imax = i - 1 else: # i is perfect if i == 0: max_of_left = B[j-1] elif j == 0: max_of_left = A[i-1] else: max_of_left = max(A[i-1], B[j-1]) if (m + n) % 2 == 1: return max_of_left if i == m: min_of_right = B[j] elif j == n: min_of_right = A[i] else: min_of_right = min(A[i], B[j]) return (max_of_left + min_of_right) / 2.03. Java 语言
class Solution { public double findMedianSortedArrays(int[] A, int[] B) { int m = A.length; int n = B.length; if (m > n) { // to ensure m<=n int[] temp = A; A = B; B = temp; int tmp = m; m = n; n = tmp; } int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2; while (iMin <= iMax) { int i = (iMin + iMax) / 2; int j = halfLen - i; if (i < iMax && B[j-1] > A[i]){ iMin = iMin + 1; // i is too small } else if (i > iMin && A[i-1] > B[j]) { iMax = iMax - 1; // i is too big } else { // i is perfect int maxLeft = 0; if (i == 0) { maxLeft = B[j-1]; } else if (j == 0) { maxLeft = A[i-1]; } else { maxLeft = Math.max(A[i-1], B[j-1]); } if ( (m + n) % 2 == 1 ) { return maxLeft; } int minRight = 0; if (i == m) { minRight = B[j]; } else if (j == n) { minRight = A[i]; } else { minRight = Math.min(B[j], A[i]); } return (maxLeft + minRight) / 2.0; } } return 0.0; } }4. C++ 语言
#include// Classical binary search algorithm, but slightly different // if cannot find the key, return the position where can insert the key int binarySearch(int A[], int low, int high, int key){ while(low<=high){ int mid = low + (high - low)/2; if (key == A[mid]) return mid; if (key > A[mid]){ low = mid + 1; }else { high = mid -1; } } return low; } /tes: // I feel the following methods is quite complicated, it should have a better high clear and readable solution double findMedianSortedArrayHelper(int A[], int m, int B[], int n, int lowA, int highA, int lowB, int highB) { // Take the A[middle], search its position in B array int mid = lowA + (highA - lowA)/2; int pos = binarySearch(B, lowB, highB, A[mid]); int num = mid + pos; // If the A[middle] in B is B's middle place, then we can have the result if (num == (m+n)/2){ // If two arrays total length is odd, just simply return the A[mid] // Why not return the B[pos] instead ? // suppose A={ 1,3,5 } B={ 2,4 }, then mid=1, pos=1 // suppose A={ 3,5 } B={1,2,4}, then mid=0, pos=2 // suppose A={ 1,3,4,5 } B={2}, then mid=1, pos=1 // You can see, the `pos` is the place A[mid] can be inserted, so return A[mid] if ((m+n)%2==1){ return A[mid]; } // If tow arrys total length is even, then we have to find the next one. int next; // If both `mid` and `pos` are not the first postion. // Then, find max(A[mid-1], B[pos-1]). // Because the `mid` is the second middle number, we need to find the first middle number // Be careful about the edge case if (mid>0 && pos>0){ next = A[mid-1]>B[pos-1] ? A[mid-1] : B[pos-1]; }else if(pos>0){ next = B[pos-1]; }else if(mid>0){ next = A[mid-1]; } return (A[mid] + next)/2.0; } // if A[mid] is in the left middle place of the whole two arrays // // A(len=16) B(len=10) // [................] [...........] // ^ ^ // mid=7 pos=1 // // move the `low` pointer to the "middle" position, do next iteration. if (num < (m+n)/2){ lowA = mid + 1; lowB = pos; if ( highA - lowA > highB - lowB ) { return findMedianSortedArrayHelper(A, m, B, n, lowA, highA, lowB, highB); } return findMedianSortedArrayHelper(B, n, A, m, lowB, highB, lowA, highA); } // if A[mid] is in the right middle place of the whole two arrays if (num > (m+n)/2) { highA = mid - 1; highB = pos-1; if ( highA - lowA > highB - lowB ) { return findMedianSortedArrayHelper(A, m, B, n, lowA, highA, lowB, highB); } return findMedianSortedArrayHelper(B, n, A, m, lowB, highB, lowA, highA); } } double findMedianSortedArrays(int A[], int m, int B[], int n) { //checking the edge cases if ( m==0 && n==0 ) return 0.0; //if the length of array is odd, return the middle one //if the length of array is even, return the average of the middle two numbers if ( m==0 ) return n%2==1 ? B[n/2] : (B[n/2-1] + B[n/2])/2.0; if ( n==0 ) return m%2==1 ? A[m/2] : (A[m/2-1] + A[m/2])/2.0; //let the longer array be A, and the shoter array be B if ( m > n ){ return findMedianSortedArrayHelper(A, m, B, n, 0, m-1, 0, n-1); } return findMedianSortedArrayHelper(B, n, A, m, 0, n-1, 0, m-1); } int main() { int r1[] = {1}; int r2[] = {2}; int n1 = sizeof(r1)/sizeof(r1[0]); int n2 = sizeof(r2)/sizeof(r2[0]); printf("Median is 1.5 = %f ", findMedianSortedArrays(r1, n1, r2, n2)); int ar1[] = {1, 12, 15, 26, 38}; int ar2[] = {2, 13, 17, 30, 45, 50}; n1 = sizeof(ar1)/sizeof(ar1[0]); n2 = sizeof(ar2)/sizeof(ar2[0]); printf("Median is 17 = %f ", findMedianSortedArrays(ar1, n1, ar2, n2)); int ar11[] = {1, 12, 15, 26, 38}; int ar21[] = {2, 13, 17, 30, 45 }; n1 = sizeof(ar11)/sizeof(ar11[0]); n2 = sizeof(ar21)/sizeof(ar21[0]); printf("Median is 16 = %f ", findMedianSortedArrays(ar11, n1, ar21, n2)); int a1[] = {1, 2, 5, 6, 8 }; int a2[] = {13, 17, 30, 45, 50}; n1 = sizeof(a1)/sizeof(a1[0]); n2 = sizeof(a2)/sizeof(a2[0]); printf("Median is 10.5 = %f ", findMedianSortedArrays(a1, n1, a2, n2)); int a10[] = {1, 2, 5, 6, 8, 9, 10 }; int a20[] = {13, 17, 30, 45, 50}; n1 = sizeof(a10)/sizeof(a10[0]); n2 = sizeof(a20)/sizeof(a20[0]); printf("Median is 9.5 = %f ", findMedianSortedArrays(a10, n1, a20, n2)); int a11[] = {1, 2, 5, 6, 8, 9 }; int a21[] = {13, 17, 30, 45, 50}; n1 = sizeof(a11)/sizeof(a11[0]); n2 = sizeof(a21)/sizeof(a21[0]); printf("Median is 9 = %f ", findMedianSortedArrays(a11, n1, a21, n2)); int a12[] = {1, 2, 5, 6, 8 }; int a22[] = {11, 13, 17, 30, 45, 50}; n1 = sizeof(a12)/sizeof(a12[0]); n2 = sizeof(a22)/sizeof(a22[0]); printf("Median is 11 = %f ", findMedianSortedArrays(a12, n1, a22, n2)); int b1[] = {1 }; int b2[] = {2,3,4}; n1 = sizeof(b1)/sizeof(b1[0]); n2 = sizeof(b2)/sizeof(b2[0]); printf("Median is 2.5 = %f ", findMedianSortedArrays(b1, n1, b2, n2)); return 0; } 5. C 语言
#include#include static double find_kth(int a[], int alen, int b[], int blen, int k) { /* Always assume that alen is equal or smaller than blen */ if (alen > blen) { return find_kth(b, blen, a, alen, k); } if (alen == 0) { return b[k - 1]; } if (k == 1) { return a[0] < b[0] ? a[0] : b[0]; } /* Divide k into two parts */ int ia = k / 2 < alen ? k / 2 : alen; int ib = k - ia; if (a[ia - 1] < b[ib - 1]) { /* a[ia - 1] must be ahead of k-th */ return find_kth(a + ia, alen - ia, b, blen, k - ia); } else if (a[ia - 1] > b[ib - 1]) { /* b[ib - 1] must be ahead of k-th */ return find_kth(a, alen, b + ib, blen - ib, k - ib); } else { return a[ia - 1]; } } static double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) { int half = (nums1Size + nums2Size) / 2; if ((nums1Size + nums2Size) & 0x1) { return find_kth(nums1, nums1Size, nums2, nums2Size, half + 1); } else { return (find_kth(nums1, nums1Size, nums2, nums2Size, half) + find_kth(nums1, nums1Size, nums2, nums2Size, half + 1)) / 2; } } int main(int argc, char **argv) { int r1[] = {1}; int r2[] = {2}; int n1 = sizeof(r1)/sizeof(r1[0]); int n2 = sizeof(r2)/sizeof(r2[0]); printf("Median is 1.5 = %f ", findMedianSortedArrays(r1, n1, r2, n2)); int ar1[] = {1, 12, 15, 26, 38}; int ar2[] = {2, 13, 17, 30, 45, 50}; n1 = sizeof(ar1)/sizeof(ar1[0]); n2 = sizeof(ar2)/sizeof(ar2[0]); printf("Median is 17 = %f ", findMedianSortedArrays(ar1, n1, ar2, n2)); int ar11[] = {1, 12, 15, 26, 38}; int ar21[] = {2, 13, 17, 30, 45 }; n1 = sizeof(ar11)/sizeof(ar11[0]); n2 = sizeof(ar21)/sizeof(ar21[0]); printf("Median is 16 = %f ", findMedianSortedArrays(ar11, n1, ar21, n2)); int a1[] = {1, 2, 5, 6, 8 }; int a2[] = {13, 17, 30, 45, 50}; n1 = sizeof(a1)/sizeof(a1[0]); n2 = sizeof(a2)/sizeof(a2[0]); printf("Median is 10.5 = %f ", findMedianSortedArrays(a1, n1, a2, n2)); int a10[] = {1, 2, 5, 6, 8, 9, 10 }; int a20[] = {13, 17, 30, 45, 50}; n1 = sizeof(a10)/sizeof(a10[0]); n2 = sizeof(a20)/sizeof(a20[0]); printf("Median is 9.5 = %f ", findMedianSortedArrays(a10, n1, a20, n2)); int a11[] = {1, 2, 5, 6, 8, 9 }; int a21[] = {13, 17, 30, 45, 50}; n1 = sizeof(a11)/sizeof(a11[0]); n2 = sizeof(a21)/sizeof(a21[0]); printf("Median is 9 = %f ", findMedianSortedArrays(a11, n1, a21, n2)); int a12[] = {1, 2, 5, 6, 8 }; int a22[] = {11, 13, 17, 30, 45, 50}; return 0; } 看完上述内容,你们对如何找出两个排序数组的中位数有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。
本文名称:如何找出两个排序数组的中位数
链接URL:http://cdxtjz.com/article/gjiige.html