189 8069 5689

Spark如何编译

这篇文章给大家分享的是有关Spark如何编译的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

创新互联成立与2013年,先为漳平等服务建站,漳平等地企业,进行企业商务咨询服务。为漳平企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

1.编译环境
CentOS6.6  JDK1.7.0_80  Maven3.2.5

2.下载Spark源代码并解压

[yyl@vmnode ~]$ pwd
/home/yyl
[yyl@vmnode make]$ pwd
/home/yyl/make
[yyl@vmnode make]$ wget http://mirrors.cnnic.cn/apache/spark/spark-1.5.0/spark-1.5.0.tgz
[yyl@vmnode make]$ tar -zxf spark-1.5.0.tgz


3.编译
解压后的源码包的根目录下有个 pom.xml 文件,这个文件就是使用 Maven 编译 Spark 的脚步文件。
OK,现在开始编译:

[yyl@vmnode spark-1.5.0]$ pwd
/home/yyl/make/spark-1.5.0
[yyl@vmnode spark-1.5.0]$ export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m"
[yyl@vmnode spark-1.5.0]$ mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -DskipTests clean package


编译过程中报错:

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-enforcer-plugin:1.4:enforce (enforce-versions) on project spark-parent_2.10: Some Enforcer rules have failed. Look above for specific messages explaining why the rule failed. -> [Help 1]
[ERROR] 
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR] 
[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException


这个错误有两个解决办法:一是编译时加入 -Denforcer.skip=true 参数;二是修改 pom.xml 文件中 properties 定义的变量的值为实际环境中 maven 、java 的版本

[yyl@vmnode spark-1.5.0]$ vim pom.xml 
    1.7
    3.2.5


解决上面的错误后重新编译,结果又报错:

[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary:
[INFO] 
[INFO] Spark Project Parent POM ........................... SUCCESS [  4.619 s]
[INFO] Spark Project Launcher ............................. SUCCESS [ 11.669 s]
[INFO] Spark Project Networking ........................... SUCCESS [ 11.537 s]
[INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [  6.245 s]
[INFO] Spark Project Unsafe ............................... SUCCESS [ 17.217 s]
[INFO] Spark Project Core ................................. SUCCESS [04:15 min]
[INFO] Spark Project Bagel ................................ SUCCESS [ 22.739 s]
[INFO] Spark Project GraphX ............................... SUCCESS [01:09 min]
[INFO] Spark Project Streaming ............................ SUCCESS [02:04 min]
[INFO] Spark Project Catalyst ............................. SUCCESS [02:43 min]
[INFO] Spark Project SQL .................................. SKIPPED
......
---------------------------------------------------
java.lang.reflect.InvocationTargetException
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at org.codehaus.plexus.classworlds.launcher.Launcher.launchEnhanced(Launcher.java:289)
        at org.codehaus.plexus.classworlds.launcher.Launcher.launch(Launcher.java:229)
        at org.codehaus.plexus.classworlds.launcher.Launcher.mainWithExitCode(Launcher.java:415)
        at org.codehaus.plexus.classworlds.launcher.Launcher.main(Launcher.java:356)
Caused by: scala.reflect.internal.Types$TypeError: bad symbolic reference. A signature in WebUI.class refers to term servlet
in value org.jetty which is not available.
It may be completely missing from the current classpath, or the version on
the classpath might be incompatible with the version used when compiling WebUI.class.
        at scala.reflect.internal.pickling.UnPickler$Scan.toTypeError(UnPickler.scala:847)
        at scala.reflect.internal.pickling.UnPickler$Scan$LazyTypeRef.complete(UnPickler.scala:854)
        at scala.reflect.internal.pickling.UnPickler$Scan$LazyTypeRef.load(UnPickler.scala:863)
        at scala.reflect.internal.Symbols$Symbol.typeParams(Symbols.scala:1489)
......


这是什么原因呢,查看Spark1.5官方编译文档,有这么一句话: Building Spark using Maven requires Maven 3.3.3 or newer and Java 7+. The Spark build can supply a suitable Maven binary; see below.果断升级 maven 到3.3.3,再次编译,OK,编译成功!

如果你想要编译兼容 Scala2.11.x 的 Spark,则使用如下命令编译(默认兼容 Scala2.10.x):

[yyl@vmnode spark-1.5.0]$ ./dev/change-scala-version.sh 2.11
[yyl@vmnode spark-1.5.0]$ mvn -Pyarn -Phadoop-2.4 -Dscala-2.11 -DskipTests clean package


编译支持 Hive 和 JDBC 的 Spark

[yyl@vmnode spark-1.5.0]$ mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -Phive -Phive-thriftserver -DskipTests clean package


4. 生成部署包
源码包的根目录下有个 make-distribution.sh 脚本,这个脚本可以打包Spark的发行包,make-distribution.sh 文件其实就是调用了 Maven 进行编译,可以通过下面的命令运行:

[yyl@vmnode spark-1.5.0]$ ./make-distribution.sh --tgz -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -Phive -Phive-thriftserver


make-distribution.sh的语法:./make-distribution.sh [--name] [--tgz] [--mvn ] [--with-tachyon]
   --tgz :在根目录下生成 spark-$VERSION-bin.tgz ,不加此参数时不生成 tgz 文件,只生成 /dist 目录
   --name NAME :和 tgz 结合可以生成 spark-$VERSION-bin-$NAME.tgz 的部署包,不加此参数时 NAME 为 hadoop 的版本号
   --with-tachyon :是否支持内存文件系统 Tachyon ,不加此参数时不支持 tachyon


PS:编译时如何指定 Hadoop 版本
例如,Spark要读取的是 Hadoop2.5.2 上的文件,使用 maven 该如何编译呢?答案是:mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.5.2 -Phive -Phive-thriftserver -DskipTests clean package
具体请看官网说明:
Spark如何编译
另外,如若遇到官方编译文件不兼容的新的 Hadoop 版本,只能是自行修改 pom.xml 文件,添加新版本的支持,例如添加:
   
      hadoop-2.7
     
        2.7.1
        0.9.3
        3.4.6
        2.6.0
     

   

感谢各位的阅读!关于“Spark如何编译”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!


文章题目:Spark如何编译
本文地址:http://cdxtjz.com/article/gsjjii.html

其他资讯