189 8069 5689

关于python函数也是数据的信息

怎样用 Python 进行数据分析?

做数据分析,首先你要知道有哪些数据分析的方法,然后才是用Python去调用这些方法

成都创新互联公司长期为数千家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为巴彦企业提供专业的网站设计制作、成都网站建设巴彦网站改版等技术服务。拥有十多年丰富建站经验和众多成功案例,为您定制开发。

那Python有哪些库类是能做数据分析的,很多,pandas,sklearn等等

所以你首先要装一个anaconda套件,它包含了几乎所有的Python数据分析工具,

之后再学怎么分析。

利用Python进行数据分析(10)-移动窗口函数

Python-for-data-移动窗口函数

本文中介绍的是 ,主要的算子是:

统计和通过其他移动窗口或者指数衰减而运行的函数,称之为 移动窗口函数

style scoped="".dataframe tbody tr th:only-of-type { vertical-align: middle; } precode.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } /code/pre/style

2292 rows × 3 columns

rolling算子,行为和resample和groupby类似

rolling可以在S或者DF上通过一个window进行调用

style scoped="".dataframe tbody tr th:only-of-type { vertical-align: middle; } precode.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } /code/pre/style

2292 rows × 3 columns

指定一个常数衰减因子为观测值提供更多的权重。常用指定衰减因子的方法:使用span(跨度)

一些统计算子,例如相关度和协方差等需要同时操作两个时间序列。

例如,金融分析中的股票和基准指数的关联性问题:计算时间序列的百分比变化pct_change()

style scoped="".dataframe tbody tr th:only-of-type { vertical-align: middle; } precode.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } /code/pre/style

在rolling及其相关方法上使用apply方法提供了一种在移动窗口中应用自己设计的数组函数的方法。

唯一要求:该函数从每个数组中产生一个单值(缩聚),例如使用rolling()...quantile(q)计算样本的中位数

python中提供的数据类型转换函数有哪些,作用是什么?

作用就是把合理的数据转换为需要的类型。int()整数,float()浮点数,str()字符串,list()列表,tuple()元组,set()集合……

比如a='12'这个是字符串类型,用int函数a=int(a)这时变量a就是整型,字符串'12'变为了整数12。Python没有变量声明的要求,变量的属性在赋值时确定,这样变量的类型就很灵活。

有一种题目判断一个整数是否回文数,用字符串来处理就很简单

a=1234321#整数

if str(a)==str(a)[::-1]:#借助字符串反转比较就可以确定是否回文数。

还比如元组b=(1,3,2,4),元组是不可以更新删除排序成员的,但是列表是可以的,通过列表函数进行转换来实现元组的更新删除和排序。

b=(1,3,2,4)

b=list(b)

b.sort()

b=tuple(b)

这时得到的元组b就是一个升序的元组(1,2,3,4)

再比如你要输入创建整数列表或者整数元组基本上写法相同,就是用对应的函数来最后处理。

ls=list(map(int,input().split()))#这个就是列表

tup=tuple(map(int,input().split()))#这个就是元组

再比如有个叫集合的,集合有唯一性,可以方便用来去重。

ls=[1,2,3,1,2,3,1,2,3]

ls=list(set(ls))#通过set()去重后,现在的ls里就是[1,2,3]去重后的列表。

Python pandas数据计数函数value_counts

value_counts是一种查看表格某列中有多少个不同值的快捷方法,并计算每个不同值有在该列中个数,类似Excel里面的count函数

其是pandas下面的顶层函数,也可以作用在Series、DataFrame下

常规用法:

pandas 的 value_counts() 函数可以对Series里面的每个值进行计数 并且 排序,默认是降序

可以看出,既可以对分类变量统计,也可以对连续数值变量统计

如果是要对结果升序排列,可以添加 ascending=True 来改变

如果不想看统计的个数,而是想看占比,那么可以设置 normalize=True 即可,结果是小数形式

可以通过apply,对每一列变量进行统计

以上是自己实践中遇到的一些点,分享出来供大家参考学习,欢迎关注DataShare公众号

如何理解“python中函数是一等公民”?

单纯的理解“python中的函数是一等公民”这句话,可能包含几层意思:

正确的理解是:第1点和第2点,不包含第3点的意思。

python中的函数是一等公民,重点想表述的是: 在python世界人人平等 。

人人平等的世界,至少应该包含两层意思:1. 身份地位平等; 2. 行使的权利平等。

打印结果是:

从上面的打印结果中可以看出:

1.Python 程序中的所有数据都是某个类的实例,因而是一个对象;

2.类本身也是一个对象。int, float, str, list, dict, set, fuction, module, NoneType, object, type等,这些类都是type类的实例,也是一个对象;

3.object类是所有类的基类

4.object是顶级父类

函数function和其他公民一样,他们的都有一个共同的身份:对象 。

在c++和java里,数据是数据,动作是动作,他俩的结合是类(class)。对于python,数据是数据,动作也可以是数据,这个牛逼的数据叫做对象object。

对于函数function来讲,既可以安静的做一个数据,又可以优雅的执行动作。

Python 官方文档里这样解释 对象(object) 的含义:Python 中的对象是对数据的抽象,Python 程序中所有数据都是由对象或者对象间的关系来表示的。每个对象都有各自的编号、类型和值。

两个祖先(a和b)占了相邻的两块内存,一个可以与它的“后代”共用内存,一个却只能让“后代”另立门户;当它们走完自己的生命周期后,b会马上被当垃圾回收,内存地址遗产被剥夺,然而a却形灭而实存,荫庇后世。

Python为这些对象倾斜资源,也就是为某种阶层固化提供了合法性。划分的依据是因为它们比较常用,共用内存就意味着减少开支,提高内存使用效率。

这就是Python有趣的地方了,一面是全体公民,一面是特权种族,组成了看似矛盾的二元对立结构。

参考:


网页标题:关于python函数也是数据的信息
网页链接:http://cdxtjz.com/article/hjcgdi.html

其他资讯