189 8069 5689

nosql成本,nosql为什么成本低

java面试中redis,mongodb类的,会问哪些问题,怎么回答

1、可能会问nosql和关系型数据库的区别:

创新互联是一家专注于成都做网站、网站建设与策划设计,德清网站建设哪家好?创新互联做网站,专注于网站建设10多年,网设计领域的专业建站公司;建站业务涵盖:德清等地区。德清做网站价格咨询:028-86922220

优点:

1)成本:nosql数据库简单易部署,基本都是开源软件,不需要像使用Oracle那样花费大量成本购买使用,相比关系型数据库价格便宜

2)查询速度:nosql数据库将数据存储于缓存之中,关系型数据库将数据存储在硬盘中,自然查询速度远不及nosql数据库

3)存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,所以可以存储基础类型以及对象或者是集合等各种格式,而数据库则只支持基础类型

4)扩展性:关系型数据库有类似join这样的多表查询机制的限制导致扩展很艰难

缺点:

1)维护的工具和资料有限,因为nosql是属于新的技术,不能和关系型数据库10几年的技术同日而语。

2)不提供对sql的支持,如果不支持sql这样的工业标准,将产生一定用户的学习和使用成本

3)不提供关系型数据库对事物的处理

2、介绍下redis和mongodb:

自行google。

3、应用场景:

redis:

a.主要是做热点数据缓存。

b.数据过期处理。

c.消息队列等功能。

d.计数,例如投票等。

mongodb:

mongodb的主要目标是在键/值存储方式(提供了高性能和高度伸缩性)以及传统的RDBMS系统(丰富的功能)架起一座桥梁,集两者的优势于一身。mongo适用于以下场景:

a.网站数据:mongo非常适合实时的插入,更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。

b.缓存:由于性能很高,mongo也适合作为信息基础设施的缓存层。在系统重启之后,由mongo搭建的持久化缓存可以避免下层的数据源过载。

c.大尺寸、低价值的数据:使用传统的关系数据库存储一些数据时可能会比较贵,在此之前,很多程序员往往会选择传统的文件进行存储。

d.高伸缩性的场景:mongo非常适合由数十或者数百台服务器组成的数据库。

e.用于对象及JSON数据的存储:mongo的BSON数据格式非常适合文档格式化的存储及查询。

4、支持的数据类型:

内容比较多,自行将网上的信息整理一下。

什么是New SQL?分析NewSQL是如何融合NoSQL和RDBMS两者的优势

NewSQL是对一类现代关系型数据库的统称,这类数据库对于一般的OLTP读写请求提供可横向扩展的性能,同时支持事务的ACID保证。这些系统既拥有NoSQL数据库的扩展性,又保持传统数据库的事务特性。NewSQL重新将“应用程序逻辑与数据操作逻辑应该分离”的理念带回到现代数据库的世界,这也验证了历史的发展总是呈现出螺旋上升的形式。

在21世纪00年代中,出现了许多数据仓库系统 (如 Vertica,Greeplum 和AsterData),这些以处理OLAP 请求为设计目标的系统并不在本文定义的NewSQL范围内。OLAP 数据库更关注针对海量数据的大型、复杂、只读的查询,查询时间可能持续秒级、分钟级甚至更长。

NoSQL的拥趸普遍认为阻碍传统数据库横向扩容、提高可用性的原因在于ACID保证和关系模型,因此NoSQL运动的核心就是放弃事务强一致性以及关系模型,拥抱最终一致性和其它数据模型 (如 key/value,graphs 和Documents)。

两个最著名的NoSQL数据库就是Google的BigTable和Amazon的Dynamo,由于二者都未开源,其它组织就开始推出类似的开源替代项目,包括Facebook的 Cassandra (基于BigTable和Dynamo)、PowerSet的 Hbase(基于BigTable)。有一些创业公司也加入到这场NoSQL运动中,它们不一定是受BigTable和Dynamo的启发,但都响应了NoSQL的哲学,其中最出名的就是MongoDB。

在21世纪00年代末,市面上已经有许多供用户选择的分布式数据库产品。使用NoSQL的优势在于应用开发者可以更关注应用逻辑本身,而非数据库的扩展性问题;但与此同时许多应用,如金融系统、订单处理系统,由于无法放弃事务的一致性要求被拒之门外。

一些组织,如Google,已经发现他们的许多工程师将过多的精力放在处理数据一致性上,这既暴露了数据库的抽象、又提高了代码的复杂度,这时候要么选择回到传统DBMS时代,用更高的机器配置纵向扩容,要么选择回到中间件时代,开发支持分布式事务的中间件。这两种方案成本都很高,于是NewSQL运动开始酝酿。

NewSQL数据库设计针对的读写事务有以下特点:

1、耗时短。

2、使用索引查询,涉及少量数据。

3、重复度高,通常使用相同的查询语句和不同的查询参考。

也有一些学者认为NewSQL系统是特指实现上使用Lock-free并发控制技术和share-nothing架构的数据库。所有我们认为是NewSQL的数据库系统确实都有这样的特点。

数据库的问题:关系型数据库与非关系型数据库的区别,和各自的发展前景?

当前主流的关系型数据库有Oracle、DB2、Microsoft SQL Server、Microsoft Access、MySQL等。

非关系型数据库有 NoSql、Cloudant。

nosql和关系型数据库比较

优点:

1)成本:nosql数据库简单易部署,基本都是开源软件,不需要像使用oracle那样花费大量成本购买使用,相比关系型数据库价格便宜。

2)查询速度:nosql数据库将数据存储于缓存之中,关系型数据库将数据存储在硬盘中,自然查询速度远不及nosql数据库。

3)存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,所以可以存储基础类型以及对象或者是集合等各种格式,而数据库则只支持基础类型。

4)扩展性:关系型数据库有类似join这样的多表查询机制的限制导致扩展很艰难。

缺点:

1)维护的工具和资料有限,因为nosql是属于新的技术,不能和关系型数据库10几年的技术同日而语。

2)不提供对sql的支持,如果不支持sql这样的工业标准,将产生一定用户的学习和使用成本。

3)不提供关系型数据库对事物的处理。

关系型数据库的最大特点就是事务的一致性:传统的关系型数据库读写操作都是事务的,具有ACID的特点,这个特性使得关系型数据库可以用于几乎所有对一致性有要求的系统中,如典型的银行系统。

关系型数据库为了维护一致性所付出的巨大代价就是其读写性能比较差,而像微博、facebook这类SNS的应用,对并发读写能力要求极高,关系型数据库已经无法应付(在读方面,传统上为了克服关系型数据库缺陷,提高性能,都是增加一级memcache来静态化网页,而在SNS中,变化太快,memchache已经无能为力了),因此,必须用新的一种数据结构存储来代替关系数据库。

关系数据库的另一个特点就是其具有固定的表结构,因此,其扩展性极差,而在SNS中,系统的升级,功能的增加,往往意味着数据结构巨大变动,这一点关系型数据库也难以应付,需要新的结构化数据存储。

于是,非关系型数据库应运而生,由于不可能用一种数据结构化存储应付所有的新的需求,因此,非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合。

NoSQL和MySQL的区别大吗?

即非关系型数据库和关系型数据库。

MySQL的优点:事务处理—保持数据的一致性;由于以标准化为前提,数据更新的开销很小(相同的字段基本上只有一处);可以进行Join等复杂查询

NoSQL的优点:首先它是基于内存的,也就是数据放在内存中,而不是像数据库那样把数据放在磁盘上,而内存的读取速度是磁盘读取速度的几十倍到上百倍,所以NoSQL工具的速度远比数据库读取速度要快得多,满足了高响应的要求。即使NoSQL将数据放在磁盘中,它也是一种半结构化的数据 格式,读取到解析的复杂度远比MySQL要简单,这是因为MySQL存储的是经过结构化、多范式等有复杂规则的数据,还原为内存结构的速度较慢。NoSQL在很大程度上满足了高并发、快速读/和响应的要求,所以它也是Java互联网系统的利器。

简单的扩展:典型例子是Cassandra,由于其架构是类似于经典的P2P,所以能通过轻松地添加新的节点来扩展这个集群;

低廉的成本:这是大多数分布式数据库共有的特点,因为主要都是开源软件,没有昂贵的License成本;

NoSQL的缺点:大多数NoSQL数据库都不支持事务,也不像 SQL Server和Oracle那样能提供各种附加功能,比如BI和报表等; 不提供对SQL的支持

那么该如何选择?

如果规模和性能比24小时的数据一致性更重要,那NoSQL是一个理想的选择 (NoSQL依赖于BASE模型——基本可用、软状态、最终一致性)。

但如果要保证到“始终一致”,尤其是对于机密信息和财务信息,那么MySQL很可能是最优的选择(MySQL依赖于ACID模型——原子性、一致性、独立性和耐久性)。

如果关系数据库在你的应用场景中,完全能够很好的工作,而你又是非常善于使用和维护关系数据库的,那么我觉得你完全没有必要迁移到NoSQL上面,除非你是个喜欢折腾的人。如果你是在金融,电信等以数据为王的关键领域,目前使用的是Oracle数据库来提供高可靠性的,除非遇到特别大的瓶颈,不然也别贸然尝试NoSQL。

然而,在WEB2.0的网站中,关系数据库大部分都出现了瓶颈。在磁盘IO、数据库可扩展上都花费了开发人员相当多的精力来优化,比如做分表分库(database sharding)、主从复制、异构复制等等,然而,这些工作需要的技术能力越来越高,也越来越具有挑战性。如果你正在经历这些场合,那么我觉得你应该尝试一下NoSQL了。

具体问题具体分析

MySQL体积小、速度快、成本低、结构稳定、便于查询,可以保证数据的一致性,但缺乏灵活性。

NoSQL高性能、高扩展、高可用,不用局限于固定的结构,减少了时间和空间上的开销,却又很难保证数据一致性。

————————————————

版权声明:本文为CSDN博主「蒟蒻熊」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:

nosql是什么

NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。

虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的工具,可以为大数据建立快速、可扩展的存储库。

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。

对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:

不需要预定义模式:不需要事先定义数据模式,预定义表结构。数据中的每条记录都可能有不同的属性和格式。当插入数据时,并不需要预先定义它们的模式。

无共享架构:相对于将所有数据存储的存储区域网络中的全共享架构。NoSQL往往将数据划分后存储在各个本地服务器上。因为从本地磁盘读取数据的性能往往好于通过网络传输读取数据的性能,从而提高了系统的性能。

弹性可扩展:可以在系统运行的时候,动态增加或者删除结点。不需要停机维护,数据可以自动迁移。

分区:相对于将数据存放于同一个节点,NoSQL数据库需要将数据进行分区,将记录分散在多个节点上面。并且通常分区的同时还要做复制。这样既提高了并行性能,又能保证没有单点失效的问题。

异步复制:和RAID存储系统不同的是,NoSQL中的复制,往往是基于日志的异步复制。这样,数据就可以尽快地写入一个节点,而不会被网络传输引起迟延。缺点是并不总是能保证一致性,这样的方式在出现故障的时候,可能会丢失少量的数据。

BASE:相对于事务严格的ACID特性,NoSQL数据库保证的是BASE特性。BASE是最终一致性和软事务。

NoSQL数据库并没有一个统一的架构,两种NoSQL数据库之间的不同,甚至远远超过两种关系型数据库的不同。可以说,NoSQL各有所长,成功的NoSQL必然特别适用于某些场合或者某些应用,在这些场合中会远远胜过关系型数据库和其他的NoSQL。

NoSQL 数据库:何时使用 NoSQL 与 SQL?

NoSQL 数据库因其功能性、易于开发性和可扩展性而广受认可,它们越来越多地用于大数据和实时 Web 应用程序,在本文中,我们通过示例讨论 NoSQL、何时使用 NoSQL 与 SQL 及其用例。

NoSQL是一种下一代数据库管理系统 (DBMS)。NoSQL 数据库具有灵活的模式,可用于构建具有大量数据和高负载的现代应用程序。

“NoSQL”一词最初是由 Carlo Strozzi 在 1998 年创造的,尽管自 1960 年代后期以来就已经存在类似的数据库。然而,NoSQL 的发展始于 2009 年初,并且发展迅速。

在处理大量数据时,任何关系数据库管理系统 (RDBMS) 的响应时间都会变慢。为了解决这个问题,我们可以通过升级现有硬件来“扩大”信息系统,这非常昂贵。但是,NoSQL 可以更好地横向扩展并且更具成本效益。

NoSQL 对于非结构化或非常大的数据对象(例如聊天日志数据、视频或图像)非常有用,这就是为什么 NoSQL 在微软、谷歌、亚马逊、Meta (Facebook) 等互联网巨头中特别受欢迎的原因。

一些流行的 NoSQL 数据库包括:

随着企业更快地积累更大的数据集,结构化数据和关系模式并不总是适合。有必要使用非结构化数据和大型对象来更好地捕获这些信息。

传统的 RDBMS 使用 SQL(结构化查询语言)语法来存储和检索结构化数据,相反,NoSQL 数据库包含广泛的功能,可以存储和检索结构化、半结构化、非结构化和多态数据。

有时,NoSQL 也被称为“ 不仅仅是 SQL ”,强调它可能支持类似 SQL 的语言或与 SQL 数据库并列。SQL 和 NoSQL DBMS 之间的一个区别是 JOIN 功能。SQL 数据库使用 JOIN 子句来组合来自两个或多个表的行,因为 NoSQL 数据库本质上不是表格的,所以这个功能并不总是可行或相关的。

但是,一些 NoSQL DBMS 可以执行类似于 JOIN的操作——就像 MongoDB 一样。这并不意味着不再需要 SQL DBMS,相反,NoSQL 和 SQL 数据库倾向于以不同的方式解决类似的问题。

一般来说,在以下情况下,NoSQL 比 SQL 更可取:

许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。

内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。NoSQL 数据库可以通过其灵活和开放的数据模型为存储多媒体内容提供更好的选择。

例如,福布斯在短短几个月内就构建了一个基于 MongoDB 的定制内容管理系统,以更低的成本为他们提供了更大的敏捷性。

大数据是指太大而无法通过传统处理系统处理的数据集,实时存储和检索大数据的系统在分析 历史 数据的同时使用流处理来摄取新数据,这是一系列非常适合 NoSQL 数据库的功能。

Zoom使用 DynamoDB(按需模式)使其数据能够在没有性能问题的情况下进行扩展,即使该服务在 COVID-19 大流行的早期使用量激增。

物联网设备具有连接到互联网或通信网络的嵌入式软件和传感器,能够在无需人工干预的情况下收集和共享数据。随着数十亿台设备生成数不清的数据,IoT NoSQL 数据库为 IoT 服务提供商提供了可扩展性和更灵活的架构。

Freshub就是这样的一项服务,它从 MySQL 切换到 MongoDB,以更好地处理其大型、动态、非统一的数据集。

拥有数十亿智能手机用户,可扩展性正成为在移动设备上提供服务的企业面临的最大挑战。具有更灵活数据模型的 NoSQL DBMS 通常是完美的解决方案。

例如,The Weather Channel使用 MongoDB 数据库每分钟处理数百万个请求,同时还处理用户数据并提供天气更新。


网站名称:nosql成本,nosql为什么成本低
分享网址:http://cdxtjz.com/article/hohiee.html

其他资讯