189 8069 5689

Kafka笔记整理(三):消费形式验证与性能测试

[TOC]

创新互联建站主营沧源网站建设的网络公司,主营网站建设方案,重庆App定制开发,沧源h5微信平台小程序开发搭建,沧源网站营销推广欢迎沧源等地区企业咨询


Kafka消费形式验证

前面的《Kafka笔记整理(一)》中有提到消费者的消费形式,说明如下:

1、每个consumer属于一个consumer group,可以指定组id。group.id

2、消费形式:
   组内:组内的消费者消费同一份数据;同时只能有一个consumer消费一个Topic中的1个partition;
   一个consumer可以消费多个partitions中的消息。所以,对于一个topic,同一个group中推荐不能有多于
   partitions个数的consumer同时消费,否则将意味着某些consumer将无法得到消息。
   组间:每个消费组消费相同的数据,互不影响。

3、在一个consumer多个线程的情况下,一个线程相当于一个消费者。
   例如:partition为3,一个consumer起了3个线程消费,另一个后来的consumer就无法消费。

下面就来验证Kafka的消费形式,不过需要说明的是,在消费者的程序代码中,可以指定消费者的group.id(我们下面将会在配置文件中指定)。

而在使用kafka的shell命令时,其实也是可以指定配置文件来指定消费者的group.id的,如果不指定,那么kafka将会随机生成一个group.id(kafka-console-consumer.sh中的kafka.tools.ConsoleConsumer类,如果没有指定group.id,其策略是随机生成)。

在后面的程序代码中,会使用同一group.id开启4个消费的线程(因为我们创建的topic有3个partition),然后在终端中通过kafka shell来开启另外一个消费者,进而达到验证kafka消费形式的目的。

另外,在测试中使用的topic如下:

$ kafka-topics.sh --describe hadoop --zookeeper uplooking01:2181,uplooking02:2181,uplooking03:2181
Topic:hadoop    PartitionCount:3        ReplicationFactor:3     Configs:
        Topic: hadoop   Partition: 0    Leader: 103     Replicas: 103,101,102   Isr: 103,101,102
        Topic: hadoop   Partition: 1    Leader: 101     Replicas: 101,102,103   Isr: 101,102,103
        Topic: hadoop   Partition: 2    Leader: 102     Replicas: 102,103,101   Isr: 102,103,101

即partition为3,副本因为也为3.

程序代码

KafkaProducerOps.java
package com.uplooking.bigdata.kafka.producer;

import com.uplooking.bigdata.kafka.constants.Constants;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;
import java.util.Random;

/**
 * 通过这个KafkaProducerOps向Kafka topic中生产相关的数据
 * 

* Producer */ public class KafkaProducerOps { public static void main(String[] args) throws IOException { /** * 专门加载配置文件 * 配置文件的格式: * key=value * * 在代码中要尽量减少硬编码 * 不要将代码写死,要可配置化 */ Properties properties = new Properties(); InputStream in = KafkaProducerOps.class.getClassLoader().getResourceAsStream("producer.properties"); properties.load(in); /** * 两个泛型参数 * 第一个泛型参数:指的就是kafka中一条记录key的类型 * 第二个泛型参数:指的就是kafka中一条记录value的类型 */ String[] girls = new String[]{"姚慧莹", "刘向前", "周 新", "杨柳"}; Producer producer = new KafkaProducer(properties); Random random = new Random(); int start = 1; for (int i = start; i <= start + 20; i++) { String topic = properties.getProperty(Constants.KAFKA_PRODUCER_TOPIC); String key = i + ""; String value = "今天的<--" + girls[random.nextInt(girls.length)] + "-->很美很美哦~"; ProducerRecord producerRecord = new ProducerRecord(topic, key, value); producer.send(producerRecord); } producer.close(); } }

KafkaConsumerOps.java
package com.uplooking.bigdata.kafka.consumer;

import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.io.IOException;
import java.util.Arrays;
import java.util.Collection;
import java.util.Properties;
import java.util.concurrent.*;

/**
 * 从kafka topic中消费数据
 */
public class KafkaConsumerOps {
    public static void main(String[] args) throws IOException {
        //线程池
        ScheduledExecutorService service = Executors.newScheduledThreadPool(4);
        System.out.println("外部开始时间:" + System.currentTimeMillis());
        for (int i =0; i < 4; i++){
            ScheduledFuture schedule = service.schedule(
                    new ConsumerThread(),
                    5L,
                    TimeUnit.SECONDS);
        }
    }
}

class ConsumerThread implements Runnable {

    public void run() {
        System.out.println("线程ID:" + Thread.currentThread().getId() + "线程开始时间:" + System.currentTimeMillis());
        /**
         * 两个泛型参数
         * 第一个泛型参数:指的就是kafka中一条记录key的类型
         * 第二个泛型参数:指的就是kafka中一条记录value的类型
         */
        Properties properties = new Properties();
        try {
            properties.load(KafkaConsumerOps.class.getClassLoader().getResourceAsStream("consumer.properties"));
        } catch (IOException e) {
            e.printStackTrace();
        }
        Consumer consumer = new KafkaConsumer(properties);

        Collection topics = Arrays.asList("hadoop");
        //消费者订阅topic
        consumer.subscribe(topics);
        ConsumerRecords consumerRecords = null;
        while (true) {
            //接下来就要从topic中拉取数据
            consumerRecords = consumer.poll(1000);
            //遍历每一条记录
            for (ConsumerRecord consumerRecord : consumerRecords) {
                long offset = consumerRecord.offset();
                Object key = consumerRecord.key();
                Object value = consumerRecord.value();
                int partition = consumerRecord.partition();
                System.out.println("CurrentThreadID: " + Thread.currentThread().getId() + "\toffset: " + offset + "\tpartition: " + partition + "\tkey: " + key + "\tvalue: " + value);
            }
        }
    }
}
MyKafkaPartitioner.java
package com.uplooking.bigdata.kafka.partitioner;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;

import java.util.Map;
import java.util.Random;

/**
 * 创建自定义的分区,根据数据的key来进行划分
 * 

* 可以根据key或者value的hashCode * 还可以根据自己业务上的定义将数据分散在不同的分区中 * 需求: * 根据用户输入的key的hashCode值和partition个数求模 */ public class MyKafkaPartitioner implements Partitioner { public void configure(Map configs) { } /** * 根据给定的数据设置相关的分区 * * @param topic 主题名称 * @param key key * @param keyBytes 序列化之后的key * @param value value * @param valueBytes 序列化之后的value * @param cluster 当前集群的元数据信息 */ public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { Integer partitionNums = cluster.partitionCountForTopic(topic); int targetPartition = -1; if (key == null || keyBytes == null) { targetPartition = new Random().nextInt(10000) % partitionNums; } else { int hashCode = key.hashCode(); targetPartition = hashCode % partitionNums; System.out.println("key: " + key + ", value: " + value + ", hashCode: " + hashCode + ", partition: " + targetPartition); } return targetPartition; } public void close() { } }

Constants.java
package com.uplooking.bigdata.kafka.constants;

public interface Constants {
    /**
     * 生产的key对应的常量
     */
    String KAFKA_PRODUCER_TOPIC = "producer.topic";
}
producer.properties
############################# Producer Basics #############################

# list of brokers used for bootstrapping knowledge about the rest of the cluster
# format: host1:port1,host2:port2 ...
bootstrap.servers=uplooking01:9092,uplooking02:9092,uplooking03:9092

# specify the compression codec for all data generated: none, gzip, snappy, lz4
compression.type=none

# name of the partitioner class for partitioning events; default partition spreads data randomly
partitioner.class=com.uplooking.bigdata.kafka.partitioner.MyKafkaPartitioner

# the maximum amount of time the client will wait for the response of a request
#request.timeout.ms=

# how long `KafkaProducer.send` and `KafkaProducer.partitionsFor` will block for
#max.block.ms=

# the producer will wait for up to the given delay to allow other records to be sent so that the sends can be batched together
#linger.ms=

# the maximum size of a request in bytes
#max.request.size=

# the default batch size in bytes when batching multiple records sent to a partition
#batch.size=

# the total bytes of memory the producer can use to buffer records waiting to be sent to the server
#buffer.memory=

#####设置自定义的topic
producer.topic=hadoop

key.serializer=org.apache.kafka.common.serialization.StringSerializer
value.serializer=org.apache.kafka.common.serialization.StringSerializer
consumer.properties
# Zookeeper connection string
# comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002"
zookeeper.connect= uplooking01:2181,uplooking02:2181,uplooking03:2181

bootstrap.servers=uplooking01:9092,uplooking02:9092,uplooking03:9092

# timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000

#consumer group id
group.id=test-consumer-group

#consumer timeout
#consumer.timeout.ms=5000

key.deserializer=org.apache.kafka.common.serialization.StringDeserializer
value.deserializer=org.apache.kafka.common.serialization.StringDeserializer
pom.xml

主要是kafka-clients的依赖:


  
  
    org.apache.kafka
    kafka-clients
    0.10.0.1
  

测试

先在终端启动一个消费者,注意由于没有指定配置文件,所以其group.id是随机生成的:

$ kafka-console-consumer.sh --topic hadoop --zookeeper uplooking01:2181,uplooking02:2181,uplooking03:2181

接下来分别执行消费者的代码和生产者的代码,然后观察各个终端的输出。

生产者程序的终端输出如下:

key: 1, value: 今天的<--刘向前-->很美很美哦~, hashCode: 49, partition: 1
key: 2, value: 今天的<--刘向前-->很美很美哦~, hashCode: 50, partition: 2
key: 3, value: 今天的<--刘向前-->很美很美哦~, hashCode: 51, partition: 0
key: 4, value: 今天的<--杨柳-->很美很美哦~, hashCode: 52, partition: 1
key: 5, value: 今天的<--姚慧莹-->很美很美哦~, hashCode: 53, partition: 2
key: 6, value: 今天的<--姚慧莹-->很美很美哦~, hashCode: 54, partition: 0
key: 7, value: 今天的<--杨柳-->很美很美哦~, hashCode: 55, partition: 1
key: 8, value: 今天的<--刘向前-->很美很美哦~, hashCode: 56, partition: 2
key: 9, value: 今天的<--姚慧莹-->很美很美哦~, hashCode: 57, partition: 0
key: 10, value: 今天的<--杨柳-->很美很美哦~, hashCode: 1567, partition: 1
key: 11, value: 今天的<--姚慧莹-->很美很美哦~, hashCode: 1568, partition: 2
key: 12, value: 今天的<--周  新-->很美很美哦~, hashCode: 1569, partition: 0
key: 13, value: 今天的<--姚慧莹-->很美很美哦~, hashCode: 1570, partition: 1
key: 14, value: 今天的<--姚慧莹-->很美很美哦~, hashCode: 1571, partition: 2
key: 15, value: 今天的<--刘向前-->很美很美哦~, hashCode: 1572, partition: 0
key: 16, value: 今天的<--刘向前-->很美很美哦~, hashCode: 1573, partition: 1
key: 17, value: 今天的<--杨柳-->很美很美哦~, hashCode: 1574, partition: 2
key: 18, value: 今天的<--刘向前-->很美很美哦~, hashCode: 1575, partition: 0
key: 19, value: 今天的<--杨柳-->很美很美哦~, hashCode: 1576, partition: 1
key: 20, value: 今天的<--姚慧莹-->很美很美哦~, hashCode: 1598, partition: 2
key: 21, value: 今天的<--杨柳-->很美很美哦~, hashCode: 1599, partition: 0

消费者程序的终端输出如下:

外部开始时间:1521991118178
线程ID:20线程开始时间:1521991123182
线程ID:21线程开始时间:1521991123182
线程ID:23线程开始时间:1521991123182
线程ID:22线程开始时间:1521991123182
CurrentThreadID: 22 offset: 78  partition: 1    key: 1  value: 今天的<--刘向前-->很美很美哦~
CurrentThreadID: 22 offset: 79  partition: 1    key: 4  value: 今天的<--杨柳-->很美很美哦~
CurrentThreadID: 22 offset: 80  partition: 1    key: 7  value: 今天的<--杨柳-->很美很美哦~
CurrentThreadID: 22 offset: 81  partition: 1    key: 10 value: 今天的<--杨柳-->很美很美哦~
CurrentThreadID: 22 offset: 82  partition: 1    key: 13 value: 今天的<--姚慧莹-->很美很美哦~
CurrentThreadID: 23 offset: 81  partition: 0    key: 3  value: 今天的<--刘向前-->很美很美哦~
CurrentThreadID: 23 offset: 82  partition: 0    key: 6  value: 今天的<--姚慧莹-->很美很美哦~
CurrentThreadID: 23 offset: 83  partition: 0    key: 9  value: 今天的<--姚慧莹-->很美很美哦~
CurrentThreadID: 23 offset: 84  partition: 0    key: 12 value: 今天的<--周  新-->很美很美哦~
CurrentThreadID: 23 offset: 85  partition: 0    key: 15 value: 今天的<--刘向前-->很美很美哦~
CurrentThreadID: 23 offset: 86  partition: 0    key: 18 value: 今天的<--刘向前-->很美很美哦~
CurrentThreadID: 22 offset: 83  partition: 1    key: 16 value: 今天的<--刘向前-->很美很美哦~
CurrentThreadID: 23 offset: 87  partition: 0    key: 21 value: 今天的<--杨柳-->很美很美哦~
CurrentThreadID: 21 offset: 78  partition: 2    key: 2  value: 今天的<--刘向前-->很美很美哦~
CurrentThreadID: 22 offset: 84  partition: 1    key: 19 value: 今天的<--杨柳-->很美很美哦~
CurrentThreadID: 21 offset: 79  partition: 2    key: 5  value: 今天的<--姚慧莹-->很美很美哦~
CurrentThreadID: 21 offset: 80  partition: 2    key: 8  value: 今天的<--刘向前-->很美很美哦~
CurrentThreadID: 21 offset: 81  partition: 2    key: 11 value: 今天的<--姚慧莹-->很美很美哦~
CurrentThreadID: 21 offset: 82  partition: 2    key: 14 value: 今天的<--姚慧莹-->很美很美哦~
CurrentThreadID: 21 offset: 83  partition: 2    key: 17 value: 今天的<--杨柳-->很美很美哦~
CurrentThreadID: 21 offset: 84  partition: 2    key: 20 value: 今天的<--姚慧莹-->很美很美哦~

消费者shell的终端输出如下:

$ kafka-console-consumer.sh --topic hadoop --zookeeper uplooking01:2181,uplooking02:2181,uplooking03:2181
今天的<--刘向前-->很美很美哦~
今天的<--姚慧莹-->很美很美哦~
今天的<--刘向前-->很美很美哦~
今天的<--姚慧莹-->很美很美哦~
今天的<--姚慧莹-->很美很美哦~
今天的<--杨柳-->很美很美哦~
今天的<--姚慧莹-->很美很美哦~
今天的<--刘向前-->很美很美哦~
今天的<--姚慧莹-->很美很美哦~
今天的<--姚慧莹-->很美很美哦~
今天的<--周  新-->很美很美哦~
今天的<--刘向前-->很美很美哦~
今天的<--刘向前-->很美很美哦~
今天的<--杨柳-->很美很美哦~
今天的<--刘向前-->很美很美哦~
今天的<--杨柳-->很美很美哦~
今天的<--杨柳-->很美很美哦~
今天的<--杨柳-->很美很美哦~
今天的<--姚慧莹-->很美很美哦~
今天的<--刘向前-->很美很美哦~
今天的<--杨柳-->很美很美哦~

分析

因为使用kafka shell的消费者的group.id是随机生成的,所以其肯定可以消费到topic下partition的消息,这是属于组间的消费。

而由于在消费者的程序代码中,4个线程都是使用同一个group.id的(都是使用consumer.properties这个配置文件),按照理论知识的理解,因为topic hadoop只有3个partition,所以只能有3个线程即3个consumer进行消息的消费,而观察输出,通过线程ID,发现确实只有三个线程消费了topic中的消息,这也验证了kafka组内消息的消费形式。

Kafka性能测试

参考文档:https://cwiki.apache.org/confluence/display/KAFKA/Performance+testing

生产能力测试

在kafka的安装目录的bin里有性能的评估工具bin/kafka-producer-perf-test.sh,主要输出4项指标,总共发送消息量(以MB为单位),每秒发送消息量(MB/second),发送消息总数,每秒发送消息数(records/second)。

测试如下:

[uplooking@uplooking01 ~]$ kafka-producer-perf-test.sh --topic flume-kafka --num-records 1000000 --producer-props bootstrap.servers=uplooking01:9092,uplooking02:9092,uplooking03:9092 --throughput 10000 --record-size 100
49972 records sent, 9994.4 records/sec (0.95 MB/sec), 3.1 ms avg latency, 258.0 max latency.
50200 records sent, 10040.0 records/sec (0.96 MB/sec), 2.4 ms avg latency, 141.0 max latency.
50020 records sent, 10004.0 records/sec (0.95 MB/sec), 1.2 ms avg latency, 19.0 max latency.
50010 records sent, 10000.0 records/sec (0.95 MB/sec), 2.3 ms avg latency, 127.0 max latency.
50010 records sent, 10002.0 records/sec (0.95 MB/sec), 1.3 ms avg latency, 24.0 max latency.
50020 records sent, 10004.0 records/sec (0.95 MB/sec), 2.4 ms avg latency, 186.0 max latency.
50010 records sent, 10002.0 records/sec (0.95 MB/sec), 15.1 ms avg latency, 466.0 max latency.
50020 records sent, 10002.0 records/sec (0.95 MB/sec), 11.1 ms avg latency, 405.0 max latency.
50000 records sent, 10000.0 records/sec (0.95 MB/sec), 1.2 ms avg latency, 19.0 max latency.
50030 records sent, 10004.0 records/sec (0.95 MB/sec), 1.2 ms avg latency, 20.0 max latency.
50000 records sent, 10000.0 records/sec (0.95 MB/sec), 1.2 ms avg latency, 30.0 max latency.
50010 records sent, 10002.0 records/sec (0.95 MB/sec), 1.3 ms avg latency, 19.0 max latency.
49990 records sent, 9998.0 records/sec (0.95 MB/sec), 1.4 ms avg latency, 49.0 max latency.
50033 records sent, 10006.6 records/sec (0.95 MB/sec), 37.9 ms avg latency, 617.0 max latency.
50010 records sent, 10002.0 records/sec (0.95 MB/sec), 1.5 ms avg latency, 74.0 max latency.
50007 records sent, 10001.4 records/sec (0.95 MB/sec), 1.3 ms avg latency, 19.0 max latency.
50000 records sent, 10000.0 records/sec (0.95 MB/sec), 1.8 ms avg latency, 132.0 max latency.
50010 records sent, 10002.0 records/sec (0.95 MB/sec), 1.2 ms avg latency, 15.0 max latency.
50020 records sent, 10000.0 records/sec (0.95 MB/sec), 1.9 ms avg latency, 121.0 max latency.
1000000 records sent, 9999.200064 records/sec (0.95 MB/sec), 4.96 ms avg latency, 617.00 ms max latency, 1 ms 50th, 3 ms 95th, 105 ms 99th, 541 ms 99.9th.

参数说明如下:

--num-records 1000000   总共生产的消息数量
--throughput 10000      每秒需要生产的消息数量
--record-size 100       每条消息的大小,单位为字节

消费能力测试

[uplooking@uplooking01 ~]$ kafka-consumer-perf-test.sh --topic flume-kafka --messages 1000000 --broker-list uplooking01:9092,uplooking02:9092,uplooking03:9092 --threads 3 --zookeeper uplooking01:2181,uplooking02:2181,uplooking03:2181
start.time, end.time, data.consumed.in.MB, MB.sec, data.consumed.in.nMsg, nMsg.sec
2018-03-26 05:17:21:185, 2018-03-26 05:17:22:458, 97.3055, 76.4380, 1020325, 801512.1760

上面的测试为需要消费一百万条消息,输出的参数说明如下:

开始时间     结束时间     消费消息总大小   每秒消费大小    消费消息总条数    每秒消费条数
start.time, end.time, data.consumed.in.MB, MB.sec, data.consumed.in.nMsg, nMsg.sec
2018-03-26 05:17:21:185, 2018-03-26 05:17:22:458, 97.3055, 76.4380, 1020325, 801512.1760

网页标题:Kafka笔记整理(三):消费形式验证与性能测试
标题URL:http://cdxtjz.com/article/igpsdj.html

其他资讯