189 8069 5689

提高Python处理文件效率的方法有哪些

本篇内容主要讲解“提高Python处理文件效率的方法有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“提高Python处理文件效率的方法有哪些”吧!

成都创新互联专注于叠彩企业网站建设,成都响应式网站建设,商城开发。叠彩网站建设公司,为叠彩等地区提供建站服务。全流程按需策划,专业设计,全程项目跟踪,成都创新互联专业和态度为您提供的服务

打开&关闭文件

读取或写入文件前,首先要做的就是打开文件,Python的内置函数open可以打开文件并返回文件对象。文件对象的类型取决于打开文件的模式,可以是文本文件对象,也可以是原始二进制文件,或是缓冲二进制文件对象。每个文件对象都有诸如  read()和write()之类的方法。

你能看出以下代码块中存在的问题吗?我们稍后来揭晓答案。

file = open("test_file.txt","w+") file.read() file.write("a new line")

Python文档列出了所有可能的文件模式,其中最常见的模式可见下表。但要注意一个重要规则,即:如果某一文件存在,那么任何与w相关的模式都会截断该文件,并再创建一个新文件。如果你不想覆盖原文件,请谨慎使用此模式,或尽量使用追加模式  a。

提高Python处理文件效率的方法有哪些

上一个代码块中的问题是打开文件后未关闭。在处理文件后关闭文件很重要,因为打开的文件对象可能会出现诸如资源泄漏等不可预测的风险,以下两种方式可以确保正确关闭文件。

1.使用 close()

第一种方法是显式使用close()。但较好的做法是将该代码放在最后,因为这样的话就可以确保在任何情况下都能关闭该文件,而且会使代码更加清晰。但开发人员也应负起责任,记得关闭文件。

try:     file =open("test_file.txt","w+")     file.write("a new line") exception Exception as e:     logging.exception(e) finally:     file.close()

2.使用上下文管理器,with open(...) as f

第二种方法是使用上下文管理器。若你对此不太熟悉,还请查阅Dan Bader用Python编写的上下文管理器和“ with”语句。用withopen()  as f实现了使用__enter__ 和 __exit__ 方法来打开和关闭文件。此外,它将try /  finally语句封装在上下文管理器中,这样我们就不会忘记关闭文件啦。

with open("test_file","w+") as file:     file.write("a new line")

两种方法哪个更优?这要看你使用的场景。以下示例实现了将50000条记录写入文件的3种不同方式。从输出中可见,use_context_manager_2()函数与其他函数相比性能极低。这是因为with语句在一个单独函数中,基本上会为每条记录打开和关闭文件,这种繁琐的I  / O操作会极大地影响性能。

def_write_to_file(file, line):                          withopen(file, "a") as f:                              f.write(line)              def_valid_records():                          for i inrange(100000):                              if i %2==0:                                  yield i              defuse_context_manager_2(file):                          for line in_valid_records():                              _write_to_file(file, str(line))              defuse_context_manager_1(file):                          withopen(file, "a") as f:                              for line in_valid_records():                                  f.write(str(line))              defuse_close_method(file):                          f =open(file, "a")                          for line in_valid_records():                              f.write(str(line))                          f.close()                            use_close_method("test.txt")                      use_context_manager_1("test.txt")                      use_context_manager_2("test.txt")              # Finished use_close_method  in 0.0253 secs                      # Finished  use_context_manager_1 in 0.0231 secs                      # Finished use_context_manager_2  in 4.6302 secs

读写文件

文件打开后,开始读取或写入文件。文件对象提供了三种读取文件的方法,分别是 read()、readline() 和readlines()。

  • 默认情况下,read(size=-1)返回文件的全部内容。但若文件大于内存,则可选参数 size  能帮助限制返回的字符(文本模式)或字节(二进制模式)的大小。

  • readline(size=-1) 返回整行,最后包括字符 n。如果 size 大于0,它将从该行返回最大字符数。

  • readlines(hint=-1) 返回列表中文件的所有行。若返回的字符数超过了可选参数hint,则将不返回任何行。

在以上三种方法中,由于read()  和readlines()在默认情况下以字符串或列表形式返回完整的文件,所以这两种方法的内存效率较低。一种更有效的内存迭代方式是使用readline()并使其停止读取,直到返回空字符串。空字符串“”表示指针到达文件末尾。

withopen( test.txt ,  r ) as reader:                      line = reader.readline()                      while line !="":                          line = reader.readline()                          print(line)

以节省内存的方式读取文件

编写方式有两种:write()和writelines()。顾名思义,write()能编写一个字符串,而writelines()可编写一个字符串列表。开发人员须在末尾添加  n。

withopen("test.txt", "w+") as f:                      f.write("hi")                      f.writelines(["this is aline ", "this is another line"])                        # >>>cat test.txt                  # hi                  # this is a line                  # this is anotherline

在文件中写入行

若要将文本写入特殊的文件类型(例如JSON或csv),则应在文件对象顶部使用Python内置模块json或csv。

import csv       import json              withopen("cities.csv", "w+") as file:          writer = csv.DictWriter(file, fieldnames=["city", "country"])          writer.writeheader()          writer.writerow({"city": "Amsterdam", "country": "Netherlands"})          writer.writerows(              [                  {"city": "Berlin", "country": "Germany"},                  {"city": "Shanghai", "country": "China"}, ]          )              # >>> cat cities.csv       # city,country       # Amsterdam,Netherlands       # Berlin,Germany       # Shanghai,China              withopen("cities.json", "w+") as file:          json.dump({"city": "Amsterdam", "country": "Netherlands"}, file)              # >>>cat cities.json       # { "city":"Amsterdam", "country": "Netherlands" }

在文件内移动指针

当打开文件时,会得到一个指向特定位置的文件处理程序。在r和w模式下,处理程序指向文件的开头。在a模式下,处理程序指向文件的末尾。

tell() 和 seek()

当读取文件时,若没有移动指针,那么指针将自己移动到下一个开始读取的位置。以下2种方法可以做到这一点:tell()和seek()。

tell()以文件开头的字节数/字符数的形式返回指针的当前位置。seek(offset,whence =  0)将处理程序移至远离wherece的offset字符处。wherece可以是:

  • 0: 从文件开头开始

  • 1:从当前位置开始

  • 2:从文件末尾开始

在文本模式下,wherece仅应为0,offset应≥0。

withopen("text.txt", "w+") as f:                      f.write("0123456789abcdef")                      f.seek(9)                      print(f.tell()) # 9 (pointermoves to 9, next read starts from 9)                      print(f.read()) # 9abcdef

tell()和seek()

了解文件状态

操作系统中的文件系统具有许多有关文件的实用信息,例如:文件的大小,创建和修改的时间。要在Python中获取此信息,可以使用os或pathlib模块。实际上,os和pathlib之间有很多共同之处。但后者更面向对象。

os

使用os.stat(“  test.txt”)可以获取文件完整状态。它能返回具有许多统计信息的结果对象,例如st_size(文件大小,以字节为单位),st_atime(最新访问的时戳),st_mtime(最新修改的时戳)等。

print(os.stat("text.txt")) >>> os.stat_result(st_mode=33188, st_ino=8618932538,st_dev=16777220, st_nlink=1, st_uid=501, st_gid=20, st_size=16,st_atime=1597527409, st_mtime=1597527409, st_ctime=1597527409)

单独使用os.path可获取统计信息。

os.path.getatime() os.path.getctime() os.path.getmtime() os.path.getsize()

Pathlib

使用pathlib.Path("text.txt").stat()也可获取文件完整状态。它能返回与os.stat()相同的对象。

print(pathlib.Path("text.txt").stat()) >>>os.stat_result(st_mode=33188, st_ino=8618932538, st_dev=16777220, st_nlink=1,st_uid=501, st_gid=20, st_size=16, st_atime=1597528703, st_mtime=1597528703,st_ctime=1597528703)

下文将在诸多方面比较os和pathlib的异同。

复制,移动和删除文件

Python有许多处理文件移动的内置模块。你在信任Google返回的第一个答案之前,应该明白:模块选择不同,性能也会不同。有些模块会阻塞线程,直到文件移动完成;而其他模块则可能异步执行。

shutil

shutil是用于移动、复制和删除文件(夹)的最著名的模块。它有3种仅供复制文件的方法:copy(),copy2()和copyfile()。

copy() v.s.  copy2():copy2()与copy()非常相似。但不同之处在于前者还能复制文件的元数据,例如最近的访问时间和修改时间等。不过由于Python文档操作系统的限制,即使copy2()也无法复制所有元数据。

shutil.copy("1.csv", "copy.csv")                      shutil.copy2("1.csv", "copy2.csv")              print(pathlib.Path("1.csv").stat())                      print(pathlib.Path("copy.csv").stat())                      print(pathlib.Path("copy2.csv").stat())                      # 1.csv                      # os.stat_result(st_mode=33152, st_ino=8618884732,st_dev=16777220, st_nlink=1, st_uid=501, st_gid=20, st_size=11,st_atime=1597570395, st_mtime=1597259421, st_ctime=1597570360)              # copy.csv                      # os.stat_result(st_mode=33152, st_ino=8618983930,st_dev=16777220, st_nlink=1, st_uid=501, st_gid=20, st_size=11,st_atime=1597570387, st_mtime=1597570395, st_ctime=1597570395)              #copy2.csv                      # os.stat_result(st_mode=33152, st_ino=8618983989, st_dev=16777220,st_nlink=1, st_uid=501, st_gid=20, st_size=11, st_atime=1597570395,st_mtime=1597259421, st_ctime=1597570395)

copy() v.s. copy2()

copy() v.s.  copyfile():copy()能将新文件的权限设置为与原文件相同,但是copyfile()不会复制其权限模式。其次,copy()的目标可以是目录。如果存在同名文件,则将覆盖原文件或创建新文件。但是,copyfile()的目标必须是目标文件名。

shutil.copy("1.csv", "copy.csv")                      shutil.copyfile("1.csv", "copyfile.csv")              print(pathlib.Path("1.csv").stat())                      print(pathlib.Path("copy.csv").stat())                      print(pathlib.Path("copyfile.csv").stat())              # 1.csv                      #os.stat_result(st_mode=33152, st_ino=8618884732, st_dev=16777220, st_nlink=1,st_uid=501, st_gid=20, st_size=11, st_atime=1597570395, st_mtime=1597259421,st_ctime=1597570360)              # copy.csv                      #os.stat_result(st_mode=33152, st_ino=8618983930, st_dev=16777220, st_nlink=1,st_uid=501, st_gid=20, st_size=11, st_atime=1597570387, st_mtime=1597570395,st_ctime=1597570395)              # copyfile.csv                      # permission(st_mode) is changed                      #os.stat_result(st_mode=33188, st_ino=8618984694, st_dev=16777220, st_nlink=1,st_uid=501, st_gid=20, st_size=11, st_atime=1597570387, st_mtime=1597570395,st_ctime=1597570395)              shutil.copyfile("1.csv", "./source")                      #IsADirectoryError: [Errno 21] Is a directory:  ./source

copy() v.s. copyfile()

os

os  模块内含system()函数,可在subshell中执行命令。你需要将该命令作为参数传递给system(),这与在操作系统上执行命令效果相同。为了移动和删除文件,还可以在os模块中使用专用功能。

# copy     os.system("cp 1.csvcopy.csv")              # rename/move     os.system("mv 1.csvmove.csv")     os.rename("1.csv", "move.csv")              # delete     os.system("rmmove.csv")

异步复制/移动文件

到目前为止,解决方案始终是同步执行的,这意味着如果文件过大,需要更多时间移动,那么程序可能会终止运行。如果要异步执行程序,则可以使用threading,multiprocessing或subprocess模块,这三个模块能使文件操作在单独的线程或进程中运行。

import threading          import subprocess          import multiprocessing              src ="1.csv"          dst ="dst_thread.csv"              thread = threading.Thread(target=shutil.copy,args=[src, dst])          thread.start()          thread.join()              dst ="dst_multiprocessing.csv"          process = multiprocessing.Process(target=shutil.copy,args=[src, dst])          process.start()          process.join()              cmd ="cp 1.csv dst_subprocess.csv"          status = subprocess.call(cmd, shell=True)

异步执行文件操作

搜索文件

复制和移动文件后,你可能需要搜索与特定模式匹配的文件名,Python提供了许多内置函数可以选择。

Glob

glob模块根据Unix shell使用的规则查找与指定模式匹配的所有路径名,它支持使用通配符。

glob.glob(“ *。csv”)搜索当前目录中所有具有csv扩展名的文件。使用glob模块,还可以在子目录中搜索文件。

>>>import glob       >>> glob.glob("*.csv")       [ 1.csv ,  2.csv ]       >>> glob.glob("**/*.csv",recursive=True)       [ 1.csv ,  2.csv ,  source/3.csv ]

os

os模块功能十分强大,它基本上可以执行所有文件操作。我们可以简单地使用os.listdir()列出目录中的所有文件,并使用file.endswith()和file.startswith()来检测模式,还可使用os.walk()来遍历目录。

import os              for file in os.listdir("."):           if file.endswith(".csv"):              print(file)          for root, dirs, files in os.walk("."):           for file in files:              if file.endswith(".csv"):                  print(file)

搜索文件名——os

pathlib

pathlib  的功能与glob模块类似。它也可以递归搜索文件名。与上文基于os的解决方案相比,pathlib代码更少,并且提供了更多面向对象的解决方案。

from pathlib importPath              p =Path(".")        for name in p.glob("**/*.csv"): # recursive           print(name)

搜索文件名——pathlib

管理文件路径

管理文件路径是另一项常见的执行任务。它可以获取文件的相对路径和绝对路径,也可以连接多个路径并找到父目录等。

相对路径和绝对路径

os和pathlib都能获取文件或目录的相对路径和绝对路径。

import os       import pathlib              print(os.path.abspath("1.txt"))  # absolute       print(os.path.relpath("1.txt"))  # relative              print(pathlib.Path("1.txt").absolute())  # absolute       print(pathlib.Path("1.txt"))  # relative

文件的相对和绝对路径

联接路径

这是我们可以独立于环境连接os和pathlib中的路径的方式。pathlib使用斜杠创建子路径。

import os       import pathlib              print(os.path.join("/home", "file.txt"))       print(pathlib.Path("/home") /"file.txt")

链接文件路径

获取父目录

dirname()是在os中获取父目录的函数,而在pathlib中,只需使用Path().parent函数,就能获取父文件夹。

import os       import pathlib              # relative path       print(os.path.dirname("source/2.csv"))       # source       print(pathlib.Path("source/2.csv").parent)       # source              # absolute path       print(pathlib.Path("source/2.csv").resolve().parent)       # /Users/<...>/project/source       print(os.path.dirname(os.path.abspath("source/2.csv")))       # /Users/<...>/project/source

获取父文件夹

到此,相信大家对“提高Python处理文件效率的方法有哪些”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!


分享标题:提高Python处理文件效率的方法有哪些
URL链接:http://cdxtjz.com/article/ijsoec.html

其他资讯