索引,使用索引可快速访问数据库表中的特定信息。索引是对数据库表中一列或多列的值进行排序的一种结构,例如 employee 表的姓名(name)列。如果要按姓查找特定职员,与必须搜索表中的所有行相比,索引会帮助您更快地获得该信息。
10年积累的成都网站建设、网站设计经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有荣昌免费网站建设让你可以放心的选择与我们合作。
索引的优点:
不需要做全表扫描,只需要扫描索引索引只存储了这个表的数据的一小部分,这小部分可以帮我们实现快速查询,因此扫描的时候只扫描这一小部分即可,如果将这小部分装载入内存中的话,速度会更快
·大大减少了服务器需要扫描的数据量
·索引可以帮助服务器避免排序或使用临时表
·索引可以将随机I/O转换为顺序I/O
索引的缺点:
索引是保存了数据表上的一小部分数据,那么这些数据是需要额外存储的,毫无疑问如果更新了表中的数据,那么响应的索引数据也要跟着更新,加速了查找操作,但是减少了写入速度对查找的加速是否有用还是有待评估的,比如我们将一个表中的按年龄实现了索引创建(在年龄上创建了索引)平时大多数操作都是按照名字上去查找的,那么索引则无任何作用,所谓索引必须跟查找建完全匹配才有意义,但我们要知道大多数的查找未必只在有限字段上执行,也就意味着创建索引必须包含多个段,需要看索引是如何去生成的,对于多个条件可以将索引做为组合索引来查找,所以索引的设计是非常有技巧的
索引本身带来的未必是优势,如果一张表中索引非常的多的话,可能对于整个系统性能的影响是非常大的,如果一张表的本身非常小只有十几行,创建索引反而会减慢速度的,因为全表扫描也未必用不了多长时间
但如果表非常大的话,索引则非常有用,如果数据量过大那么索引反而也未必有意义,比如一张表非常大,上T的数据,可以想象一下创建什么样的索引才可以,所以只能将大表切割成小表,并且分布在不同的物理节点上,对MySQL来说叫做分区;对MongoDB来讲叫shaerd
索引级别:
索引最高级别3星索引
1星:索引国能将相关的记录放置在一起,大大降低了I/O
2星:索引中数据的存储顺序与查找标准中顺序一致(只要设计良好即可)
3星:如果索引中包含查询中所需要的全部数据(覆盖索引)
索引的类别:
·顺序索引
·散列索引
将索引映射至散列桶中,映射是通过散列函数进行的
评估索引标准:
1、访问类型(如果做等值比较 散列比较好,如果做范围查找,那么顺序比较好
2、访问时长(为完成一个访问,基于索引类型访问的时间可能不同)
3、插入时长(更新表的话索引本身可能会有很大代价,如果散列索引的话只不过重新执行以下算法即可,但是对于顺序索引的话,有可能会移动索引列表后面的索引数据)
4、删除时长
5、空间开销
索引类型:
·顺序索引:按照聚集索引存放的文件也被称为索引顺序文件,最常见的索引类型,一般来讲被索引文件记录,如果按照顺序存放则为索引顺序文件,否则为堆文件
·聚集索引:如果某记录文件中的记录顺序是按照对应的搜索码(键/key)的顺序排序的话,被称为主索引
·非聚集索引:搜索码中的指定的次序与记录中的记录次序不一致
根据索引中是否为每个记录响应的创建索引项:
·稠密索引 (每个搜索码值都有一个对应的索引项
·稀疏索引 (并不是每个记录都有索引项)
·多级索引 (索引指向索引,以此类推,最后的索引指向数据;
索引本身,主索引之外的索引被称为辅助索引,而只有主索引才能使用稀疏索引,其他所有必需是稠密索引,而辅助索引必须是稠密索引
·B+树索引:
·Balance Tree 平衡树索引
·每个叶子节点,从叶子至根的距离是相同的,所以叫做平衡树
·层次需要根据数据量来动态创建层次
·B+树是一种顺序索引
散列索引则:
通过散列函数,数据库加载为一次I/O 指针加载数据为2次 I/O。
I/O是占据时间比例是最大值的,索引散列索引的速度在做精确匹配的时候会更快,因为I/O次数要少的多的多,因此散列索引能够让我们避免访问索引结构的。
散列索引的缺点:散列索引还有可能造成偏斜,长久以来可能发有的散列桶有的满有的空 导致每个节点的负载参差不齐,如果散列函数做的不够随机就有可能造成偏斜的情况
所以散列函数需要做到以下几点:
·分布式随机
·分布式均匀
散列函数适用的场景:精确值匹配,比如做等值比较: = ,IN(), <=> 等
全文索引:
默认情况下顺序索引只能索引字段的前有限个字节,假如字段名是test,test是可以创建存储文本量非常大,不可能将所有的数据全部存放在索引中,肯定只在其中抽取部分字节,所以查找标准肯定是最左前缀方式,不能包含整个字段,如果想实现全文匹配关键字匹配的话,这样则只能使用全文索引(mysql中只有myisam引擎支持)(innodb的话则可以借助外界的索引工具来实现比如sphinx)
如果必须要实现全文索引,使用sphinx是个不错的选择
空间索引:
索引中的数据不能查找,必须使用空间索引函数来获取相应查找结果
索引的特性:
·全值匹配:
简单来讲,匹配他的用户名:Name="User12" ,匹配最左前缀:
Name LIKE"User1%"
无效: Name LIKE"%User1%"
·匹配列前缀:与最左前缀一样(Name LIKE"User1%" 无效: Name LIKE"%User1%") 假如组合索引创建了2个字段:Name,Age 从最左侧开始则有效,那么Age > 80 这样则没有任何意义,因为查找条件一定必须从最左边开始的,但是反过来则非常用有:(Age,Name)
匹配范围值:精确匹配某一列并范围匹配另外一列 比如name=12并age大于80
只访问索引的查询:
假设顺序索引是3级,要找到对应的行数据,如果没有使用覆盖索引,那么需要几次I/O:首先查找到根索引. 然后查找下一级索引,如果下一级索引在磁盘上,那么意味着将装载数据块,这为1次IO ,再一次索引则又消耗一次IO,再次装载硬盘数据,则又一次I/O,如果事先根索引没有被加载,那么至少需要4次I/O才会找到数据
主键,唯一键 都是顺序索引,但是唯一不同的地方是:主键是不能重复 不能为空,唯一键可以重复可以为空
创建索引:
> db.testcoll.find()
{ "_id" : ObjectId("531fbe8d020f14309ee1410a"), "Name" : "User1","Age" : 1, "Gender" : "M", "preferbook": [ "blue book", "yellow book" ] }
{ "_id" : ObjectId("531fbe8d020f14309ee1410b"), "Name" : "User2","Age" : 2, "Gender" : "M", "preferbook": [ "blue book", "yellow book" ] }
{ "_id" : ObjectId("531fbe8d020f14309ee1410c"), "Name" : "User3","Age" : 3, "Gender" : "M", "preferbook": [ "blue book", "yellow book" ] }
如上所示,我们要在用户字段名上创建索引,注意的是字段id默认就是索引,而且是主键索引,我们在主键索引之外创建索引都被称为辅助索引 ,因为表内大多数都是根据用户名来查找的,所以希望根据用户名来查找索引:
使用命令ensureIndex 在Name字段上创建索引
> db.testcoll.ensureIndex({Name:1})
查看索引:
> db.testcoll.getIndexes()
[
{
"v" : 1,
"key" : {
"_id" : 1
},
"ns" :"testdb.testcoll",
"name" :"_id_"
},
#第二个索引是在name上创建,是我们自己指定的,如下所示:
{
"v" : 1,
"key" : {
"Name" : 1
},
"ns" :"testdb.testcoll",
"name" :"Name_1"
}
删除索引:
可以使用dropIndex将name字段的索引删除
> db.testcoll.dropIndex({Name:1})
{ "nIndexesWas" : 2, "ok" : 1 }
再次查看其索引
> db.testcoll.getIndexes()
[
{
"v" : 1,
"key" : {
"_id" : 1
},
"ns" :"testdb.testcoll",
"name" :"_id_"
}
]
删除coll所有的索引
> db.testcoll.dropIndex({Name:1})
同时也支持使用唯一索引,我们可以在name这个字段上创建唯一索引,也就意味着用户名不得出现重复的名字
#唯一索引
> db.testcoll.ensureIndex({Name:1},{unique:true})
#稀疏索引
> db.testcoll.ensureIndex({Name:1},{sparse:true})
MongoDB中所支持的索引类型
对mongodb来讲,索引可以创建在collection级别,也可以创建在sub-field中()子collection
完全可以根据自己的需求创建,那么索引可以将随机IO转换为顺序IO
索引类型:
1、单键索引(创建在一个字段上的索引)
2、组合索引(上面提到了)
3、多键索引(一个文档中某个字段的值可以是数组,如果创建在这么个字段上,一个字段上有多个值,则为多键索引,(一个值为一个数组))
4、空间索引(只能使用空间索引函数,与mysql一致)
5、文本索引(全文索引)
6、哈希索引
创建哈希索引的话,必须明确说明哈希的格式才可以,如下所示:
>db.testcoll.ensureIndex({Name:"hashed"})
> db.testcoll.dropIndex({Name:"hashed"})
显示索引是否能用到:
显示查询语句是否能真正用到所创建的索引:
> db.testcoll.find({Name: "User19"}).explain()
{
"cursor" : "BtreeCursor Name_1",
"isMultiKey" : false, #是否用到键
"n" : 1,
"nscannedObjects" : 1,
"nscanned" : 1, #扫描了多少个记录
"nscannedObjectsAllPlans" : 1,
"nscannedAllPlans" : 1,
"scanAndOrder" : false, #扫描后有没有记录
"indexOnly" : false, #是否用到索引,是否仅在索引中
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
"indexBounds" : {
"Name" : [
[
"User19",
"User19"
]
]
},
"server" : "localhost:27017"
}
将索引删除:
> db.testcoll.find({Name: "User19"}).explain()
{
"cursor" : "BasicCursor",
"isMultiKey" : false,
"n" : 1,
"nscannedObjects" : 99, #扫描的对象为全部,意为全表扫描
"nscanned" : 99,
"nscannedObjectsAllPlans" : 99,
"nscannedAllPlans" : 99,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
"indexBounds" : {
},
"server" : "localhost:27017"
}
在查询的时候可以用hint指定使用的索引
> db.testcoll.find({Name: "User19"}).hint({Name:1}).explain()
创建组合索引
> db.testcoll.ensureIndex({Name:1,Age:1},{uniqe:true})
> db.testcoll.getIndexes()
[
{
"v" : 1,
"key" : {
"_id" : 1
},
"ns" :"testdb.testcoll",
"name" :"_id_"
},
{
"v" : 1,
"key" : {
"Name" : 1,
"Age" : 1
},
"ns" :"testdb.testcoll",
"name" :"Name_1_Age_1",
"uniqe" : true
}
]
如果不指定则在name:1上查找索引。如下所示:
> db.testcoll.find({Name: "User19"}).explain()
{
"cursor" : "BtreeCursor Name_1_Age_1",
"isMultiKey" : false,
"n" : 1,
"nscannedObjects" : 1,
"nscanned" : 1,
"nscannedObjectsAllPlans" : 1,
"nscannedAllPlans" : 1,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
"indexBounds" : {
"Name" : [
[
"User19",
"User19"
]
],
"Age" : [
[
{
"$minElement" : 1
},
{
"$maxElement" : 1
}
]
]
},
"server" : "localhost:27017"
}