189 8069 5689

fluttertree,fluttertree梗

Flutter浪潮下的音视频研发探索

文/陈炉军

站在用户的角度思考问题,与客户深入沟通,找到石棉网站设计与石棉网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站设计制作、做网站、企业官网、英文网站、手机端网站、网站推广、主机域名、虚拟空间、企业邮箱。业务覆盖石棉地区。

整理/LiveVideoStack

大家好,我是阿里巴巴闲鱼事业部的陈炉军,本次分享的主题是Flutter浪潮下的音视频研发探索,主要内容是针对闲鱼APP在当下流行的跨平台框架Flutter的大规模实践,介绍其在音视频领域碰到的一些困难以及解决方案。

分享内容主要分为四个方面,首先会对Flutter有一个简单介绍以及选择Flutter作为跨平台框架的原因,其次会介绍Flutter中与音视频关系非常大的外接纹理概念,以及对它做出的一些优化。之后会对闲鱼在音视频实践过程中碰到的一些Flutter问题提出了一些解决方案——TPM音视频框架。最后是闲鱼Flutter多媒体开源组件的介绍。

Flutter

Flutter是一个跨平台框架,以往的做法是将音频、视频和网络这些模块都下沉到C++层或者ARM层,在其上封装成一个音视频的SDK,供UI层的PC、iOS和Android调用。

而Flutter做为一个UI层的跨平台框架,顾名思义就是在UI层也实现了一个跨平台开发。可以预想的是未Flutter发展的好的话,会逐渐变为一个从底层到UI层的一个全链路的跨平台开发,技术人员分别负责SDK和UI层的开发。

在Flutter之前已经有很多跨平台UI解决方案,那为什么选择Flutter呢?

我们主要考虑性能和跨平台的能力。

以往的跨平台方案比如Weex,ReactNative,Cordova等等因为架构的原因无法满足性能要求,尤其是在音视频这种性能要求几乎苛刻的场景。

而诸如Xamarin等,虽然性能可以和原生App一致,但是大部分逻辑还是需要分平台实现。

我们可以看一下,为什么Flutter可以实现高性能:

原生的native组件渲染以IOS为例,苹果的UIKit通过调用平台自己的绘制框架QuaztCore来实现UI的绘制,图形绘制也是调用底层的API,比如OpenGL、Metal等。

而Flutter也是和原生API逻辑一致,也是通过调用底层的绘制框架层SKIA实现UI层。这样相当于Flutter他自己实现了一套UI框架,提供了一种性能超越原生API的跨平台可能性。

但是我们说一个框架最终性能怎样,其实取决于设计者和开发者。至于现在到底是一个什么状况:

在闲鱼的实践中,我们发现在正常的开发没有特意的去优化UI代码的情况下,在一些低端机上,Flutter界面的流畅性是比Native界面要好的。

虽然现在闲鱼某些场景下会有卡顿闪退等情况,但是这是一个新事物发展过程中的必然问题,我们相信未来性能肯定不会成为限制Flutter发展的瓶颈的。

在闲鱼实践Flutter的过程中,混合栈和音视频是其中比较难解决的两个问题,混合栈是指一个APP在Flutter过程中不可能一口气将所有业务全部重写为Flutter,所以这是一个逐步迭代的过程,这期间原生native界面与Flutter界面共存的状态就称之为混合栈。闲鱼在混合栈上也有一些比较好的输出,例如FlutterBoost。

外接纹理

在讲音视频之前需要简要介绍一下外接纹理的概念,我们将它称之为是Flutter和Frame之间的桥梁。

Flutter渲染一帧屏幕数据首先要做的是,GPU发出的VC信号在Flutter的UI线程,通过AOT编译的机器码结合当前Dart Runtime,生成Layer Tree UI树,Layer Tree上每一个叶子节点都代表了当前屏幕上所需要渲染的每一个元素,包含了这些元素渲染所需要的内容。将Layer Tree抛给GPU线程,在GPU线程内调用Skia去完成整个UI的渲染过程。Layer Tree中有PictureLayer和TextureLayer两个比较重要的节点。PictureLayer主要负责屏幕图片的渲染,Flutter内部实现了一套图片解码逻辑,在IO线程将图片读取或者从网络上拉取之后,通过解码能够在IO线程上加载出纹理,交给GPU线程将图片渲染到屏幕上。但是由于音视频场景下系统API太过繁多,业务场景过于复杂。Flutter没有一套逻辑去实现跨平台的音视频组件,所以说Flutter提出了一种让第三方开发者来实现音视频组件的方式,而这些音视频组件的视频渲染出口,就是TextureLayer。

在整个Layer Tree渲染的过程中,TextureLayer的数据纹理需要由外部第三方开发者来指定,可以把视频数据和播放器数据送到TextureLayer里,由Flutter将这些数据渲染出来。

TextureLayer渲染过程:首先判断Layer是否已经初始化,如果没有就创建一个Texture,然后将Texture Attach到一个SufaceTexture上。

这个SufaceTexture是音视频的native代码可以获取到的对象,通过这个对象创建的Suface,我们可以将视频数据、摄像头数据解码放到Suface中,然后Flutter端通过监听SufaceTexture的数据更新就可以顺利把刚才创建的数据更新到它的纹理中,然后再将纹理交给SKIA渲染到屏幕上。

然而我们如果需要用Flutter实现美颜,滤镜,人脸贴图等等功能,就需要将视频数据读取出来,更新到纹理中,再将GPU纹理经过美颜滤镜处理后生成一个处理后的纹理。按Flutter提供的现有能力,必须先将纹理中的数据从GPU读出到CPU中,生成Bitmap后再写入Surface中,这样在Flutter中才能顺利的更新到视频数据,这样做对系统性能的消耗很大。

通过对Flutter渲染过程分析,我们知道Flutter底层需要渲染的数据就是GPU纹理,而我们经过美颜滤镜处理完成以后的结果也是GPU纹理,如果可以将它直接交给Flutter渲染,那就可以避免GPU-CPU-GPU这样的无用循环。这样的方法是可行的,但是需要一个条件,就是OpenGL上下文共享。

OpenGL

在说上下文之前,得提到一个和上线文息息相关的概念:线程。

Flutter引擎启动后会启动四个线程:

第一个线程是UI线程,这是Flutter自己定义的UI线程,主要负责GPU发出的VSync信号时候用当前Dart编译的机器码和当前运行环境创建出Layer Tree。

还有就是IO线程和GPU线程。和大部分OpenGL处理解决方案中一样,Flutter也采取一个线程责资源加载,一部分负责资源渲染这种思路。

两个线程之间纹理共享有两种方式。一种是EGLImage(IOS是 CVOpenGLESTextureCache)。一种是OpenGL Share Context。Flutter通过Share Context来实现纹理共享,将IO线程的Context和GPU线程的Context进行Share,放到同一个Share Group下面,这样两个线程下资源是互相可见可以共享的。

Platform线程是主线程,Flutter中有一个很奇怪的设定,GPU线程和主线程共用一个Context。并且在主线程也有很多OpenGL 操作。

这样的设计会给音视频开发带来很多问题,后面会详细说。

音视频端美颜处理完成的OpenGL纹理能够让Flutter直接使用的条件就是Flutter的上下文需要和平台音视频相关的OpenGL上下文处在一个Share Group下面。

由于Flutter主线程的Context就是GPU的Context,所以在音视频端主线程中有一些OpenGL操作的话,很有可能使Flutter整个OpenGL被破坏掉。所以需要将所有的OpenGL操作都限制在子线程中。

通过上述这两个条件的处理,我们就可以在没有增加GPU消耗的前提下实现美颜和滤镜等等功能。

TPM

在经过demo验证之后,我们将这个方案应用到闲鱼音视频组件中,但改造过程中发现了一些问题。

上图是摄像头采集数据转换为纹理的一段代码,其中有两个操作:首先是切进程,将后面的OpenGL操作都切到cameraQueue中。然后是设置一次上下文。然后这种限制条件或者说是潜规则往往在开发过程中容易被忽略的。而这个条件一旦忽略后果就是出现一些莫名其妙的诡异问题极难排查。因此我们就希望能抽象出一套框架,由框架本身实现线程的切换、上下文和模块生命周期等的管理,开发者接入框架以后只需要安心实现自己的算法,而不需要关心这些潜规则还有其他一些重复的逻辑操作。

在引入Flutter之前闲鱼的音视频架构与大部分音视频逻辑一样采用分层架构:

1:底层是一些独立模块

2:SDK层是对底层模块的封装

3:最上层是UI层。

引入Flutter之后,通过分析各个模块的使用场景,我们可以得出一个假设或者说是抽象:音视频应用在终端上可以归纳为视频帧解码之后视频数据帧在各个模块之间流动的过程,基于这种假设去做Flutter音视频框架的抽象。

咸鱼Flutter多媒体开源组件

整个Flutter音视频框架抽象分为管线和数据的抽象、模块的抽象、线程统一管理和上下文同一管理四部分。

管线,其实就是视频帧流动的管道。数据,音视频中涉及到的数据包括纹理、Bit Map以及时间戳等。结合现有的应用场景我们定义了管线流通数据以Texture为主数据,同时可以选择性的添加Bit Map等作为辅助数据。这样的数据定义方式,避免重复的创建和销毁纹理带来的性能开销以及多线程访问纹理带来的一些问题。也满足一些特殊模块对特殊数据的需求。同时也设计了纹理池来管理管线中的纹理数据。

模块:如果把管线和数据比喻成血管和血液,那框架音视频的场景就可以比喻成器官,我们根据模块所在管线的位置抽象出采集、处理和输出三个基类。这三个基类里实现了刚才说的线程切换,上下文切换,格式转换等等共同逻辑,各个功能模块通过集成自这些基类,可以避免很多重复劳动。

线程:每一个模块初始化的时候,初始化函数就会去线程管理的模块去获取自己的线程,线程管理模块可以决定给初始化函数分配新的线程或者已经分配过其他模块的线程。

这样有三个好处:

一是可以根据需要去决定一个线程可以挂载多少模块,做到线程间的负载均衡。第二,多线程并发式能够保证模块内的OpenGL操作是在当前线程内而不会跑到主线程去,彻底避免Flutter的OpenGL 环境被破坏。第三,多线程并行可以充分利用CPU多核架构,提升处理速度。

从Flutter端修改Flutter引擎将Context取出后,根据Context创建上下文的统一管理模块,每一个模块在初始化的时候会获取它的线程,获取之后会调用上下文管理模块获取自己的上下文。这样可以保证每一个模块的上下文都是与Flutter的上下文进行Share的,每个模块之间资源都是共享可见的,Flutter和音视频native之间也是互相共享可见的。

基于上述框架如果要实现一个简单的场景,比如画面实时预览和滤镜处理功能,

1:需要选择功能模块,功能模块包括摄像头模块、滤镜处理模块和Flutter画面渲染模块,

2:需要配置模块参数,比如采集分辨率、滤镜参数和前后摄像头设置等,

3:在创建视频管线后使用已配置的参数创建模块

4:最后管线搭载模块,开启管线就可以实现这样简单的功能。

上图为整个功能实现的代码和结构图。

结合上述音视频框架,闲鱼实现了Flutter多媒体开源组件。

组要包含四个基本组件分别是:

1:视频图像拍摄组件

2:播放器组件

3:视频图像编辑组件

4:相册选择组件

现在这些组件正在走内部开源流程。预计9月份,相册和播放器会实现开源。

后续展望和规划

1:实现开头所说的从底层SDK到UI的全链路的跨端开发。目前底层框架层和模块层都是各个平台各自实现,反而是Flutter的UI端进行了跨平台的统一,所以后续会将底层也按照音视频常用做法把逻辑下沉到C++层,尽可能的实现全链路跨平台。

2:第二部分内容为开源共建,闲鱼开源的内容不仅包括拍摄、编辑组件,还包括了很多底层模块,希望有开发者在基于Flutter开发音视频应用时可以充分利用闲鱼开源出的音视频模块能力,搭建APP框架,开发者只要去负责实现特殊需求模块就可以,尽可能的减少重复劳动。

flutter之build(BuildContext context)方法

StatelessWidget是一个抽象类继承自Widget,这个抽象类中定义了build方法:

Widget build(BuildContext context);

功能:

Describes the part of the user interface represented by this widget.

描述这个widget所代表的用户界面的部分,感觉类似于iOS视图控制器中的viewdidload;

调用时机:

The framework calls this method when this widget is inserted into the tree in a given  BuildContext  and when the dependencies of this widget change (e.g., an  InheritedWidget  referenced by this widget changes).

framework会调用这个方法:1.当这个widget被插入到给定  BuildContext  的中的时候;2.当widget的依赖改变的时候;

方式:

framework会用这个方法返回的widget取代这个widget下边的子树,或者更新已经存在的子树,或者删除子树用新子树填充;这依赖于方法返回的widget是否可以更新已经存在的子树的根,或者是widget调用canUpdate;

使用条件:

1.这个widget的区域不能随时间改变;

2.从context使用  BuildContext.inheritFromWidgetOfExactType 获得的任何环境状态。

Flutter 启动页的前世今生适配历程

APP 启动页在国内是最常见也是必备的场景,其中启动页在 iOS 上算是强制性的要求,其实配置启动页挺简单,因为在 Flutter 里现在只需要:

一般只要配置无误并且图片尺寸匹配,基本上就不会有什么问题, 那既然这样,还有什么需要适配的呢?

事实上大部分时候 iOS 是不会有什么问题, 因为 LaunchScreen.storyboard 的流程本就是 iOS 官方用来做应用启动的过渡;而对于 Andorid 而言,直到 12 之前 windowBackground 这种其实只能算“民间”野路子 ,所以对于 Andorid 来说,这其中就涉及到一个点:

所以下面主要介绍 Flutter 在 Android 上为了这个启动图做了哪些骚操作~

在已经忘记版本的“远古时期” , FlutterActivity 还在 io.flutter.app.FlutterActivity 路径下的时候,那时启动页的逻辑相对简单,主要是通过 App 的 AndroidManifest 文件里是否配置了 SplashScreenUntilFirstFrame 来进行判断。

在 FlutterActivity 内部 FlutterView 被创建的时候,会通过读取 meta-data 来判断是否需要使用 createLaunchView 逻辑 :

是不是很简单,那就会有人疑问为什么要这样做?我直接配置 Activity 的 android:windowBackground 不就完成了吗?

这就是上面提到的时间差问题, 因为启动页到 Flutter 渲染完第一帧画面中间,会出现概率出现黑屏的情况,所以才需要这个行为来实现过渡 。

经历了“远古时代”之后, FlutterActivity 来到了 io.flutter.embedding.android.FlutterActivity , 在到 2.5 版本发布之前,Flutter 又针对这个启动过程做了不少调整和优化,其中主要就是 SplashScreen 。

自从开始进入 embedding 阶段后, FlutterActivity 主要用于实现了一个叫 Host 的 interface ,其中和我们有关系的就是 provideSplashScreen 。

默认情况下它会从 AndroidManifest 文件里是否配置了 SplashScreenDrawable 来进行判断 。

默认情况下当 AndroidManifest 文件里配置了 SplashScreenDrawable ,那么这个 Drawable 就会在 FlutterActivity 创建 FlutterView 时被构建成 DrawableSplashScreen 。

DrawableSplashScreen 其实就是一个实现了 io.flutter.embedding.android.SplashScreen 接口的类,它的作用就是:

之后 FlutterActivity 内会创建出 FlutterSplashView ,它是个 FrameLayout。

FlutterSplashView 将 FlutterView 和 ImageView 添加到一起, 然后通过 transitionToFlutter 的方法来执行动画,最后动画结束时通过 onTransitionComplete 移除 splashScreenView 。

所以整体逻辑就是:

当然这里也是分状态:

当然这个阶段的 FlutterActivity 也可以通过 override provideSplashScreen 方法来自定义 SplashScreen 。

看到没有,做了这么多其实也就是为了弥补启动页和 Flutter 渲染之间, 另外还有一个优化,叫 NormalTheme 。

通过该配置 NormalTheme ,在 Activity 启动时,就会首先执行 switchLaunchThemeForNormalTheme(); 方法将主题从 LaunchTheme 切换到 NormalTheme 。

大概配置完就是如下样子, 前面分析那么多其实就是为了告诉你,如果出现问题了,你可以从哪个地方去找到对应的点 。

讲了那么多, Flutter 2.5 之后 provideSplashScreen 和 io.flutter.embedding.android.SplashScreenDrawable 就被弃用了,惊不喜惊喜,意不意外,开不开心 ?

通过源码你会发现,当你设置了 splashScreen 的时候,会看到一个 log 警告:

为什么会弃用?

其实这个提议是在 这个 issue 上,然后通过 这个 pr 完成调整。

大概意思就是: 原本的设计搞复杂了,用 OnPreDrawListener 更精准,而且不需要为了后面 Andorid12 的启动支持做其他兼容,只需要给 FlutterActivity 等类增加接口开关即可 。

也就是2.5之后 Flutter 使用 ViewTreeObserver.OnPreDrawListener 来实现延迟直到加载出 Flutter 的第一帧。

为什么说默认情况? 因为这个行为在 FlutterActivity 里,是在 getRenderMode() == RenderMode.surface 才会被调用,而 RenderMode 又和 BackgroundMode 有关心 。

所以在 2.5 版本后, FlutterActivity 内部创建完 FlutterView 后就会执行一个 delayFirstAndroidViewDraw 的操作。

这里主要注意一个参数: isFlutterUiDisplayed 。

当 Flutter 被完成展示的时候, isFlutterUiDisplayed 就会被设置为 true。

所以当 Flutter 没有执行完成之前, FlutterView 的 onPreDraw 就会一直返回 false ,这也是 Flutter 2.5 开始之后适配启动页的新调整。

看了这么多,大概可以看到其实开源项目的推进并不是一帆风顺的,没有什么是一开始就是最优解,而是经过多方尝试和交流,才有了现在的版本,事实上开源项目里,类似这样的经历数不胜数:

Flutter中InheritedWidget的使用

在Tree中从上往下高效传递数据的基类widget , 定义为:abstract class InheritedWidget extends ProxyWidget

Flutter的响应式开发与React类似,数据都是自顶向下的。

假设有祖先组点A,中间经过结点B, C,然后到结点D,D需要从A中获取数据f,那按照自顶向下数据流转,f需要依次传递给B及C,最后才到C。这样开发极为不灵活,成本也比较高。所有Flutter需要有跨结点(只能是祖先后代节点,不能跨兄弟节点)高效传递数据的方案。

大体意思如下:

InheritedWidget 是在树中高效向下传递信息的基类部件;

调用[BuildContext.inheritFromWidgetOfExactType]方法可以从 BuildContext 中获取到最近的 InheritedWidget 类型的实例;

在 InheritedWidget 类型的控件被引用,也就是调用过 inheritFromWidgetOfExactType 方法后,当 InheritedWidget 自身状态改变时,会导致引用了 InheritedWidget 类型的子控件重构(rebuild)。

这里随便定义一个人 Person 类。

创建一个类继承 InheritedWidget,并实现 updateShouldNotify 方法。

之前说到调用[BuildContext.inheritFromWidgetOfExactType]方法可以从 BuildContext 中获取到最近的 InheritedWidget 类型的实例,所以此处定义一个静态的 of 方法,通过传入的 context 获取到最近的 InheriedDataWidget 实例。

1.定义数据模型

这里随便定义一个 Person 类。

2.自定义 InheritedWidget 控件类

创建一个类继承 InheritedWidget,并实现 updateShouldNotify 方法。

之前说到调用[BuildContext.inheritFromWidgetOfExactType]方法可以从 BuildContext 中获取到最近的 InheritedWidget 类型的实例,所以此处定义一个静态的 of 方法,通过传入的 context 获取到最近的 InheriedDataWidget 实例。

3.InheriedDataWidget 的使用

InheriedDataWidget 使用起来也很简单,它本身也是一个控件,只要在任意一个页面的子控件调用其构造方法就行,这里我们定义一个形如的 Widget 树。

WidgetA 是一个 StatefulWidget 类型的控件,可以调用 setState 刷新,如果是继承人 Stateless 类型的控件,那我们也可以通过 Stream 或者其他方式刷新数据,感兴趣的请看[什么是 Stream? Dart

WidgetA1_1 类

WidgetA1_2 类

WidgetA1_3 类

当我们点击 floatingActionButton 的时候,WidgetA1, WidgetA1_1, WidgetA1_2 的控件都会更新 Person 的信息,而且每点 floatingActionButton 一次, 当我们点击 floatingActionButton 的时候,WidgetA1, WidgetA1_1, WidgetA1_2 的控件都会更新 Person 的信息,而且每点 floatingActionButton 一次,都会输出:

如果我们试图在和 WidgetA 的同一层级的兄弟节点去访问 InheriedDataWidget 的 Person 数据,是不行的,因为父节点中并没有插入 InheriedDataWidget。

把 WidgetB 和 WidgetA 保持同一节点

这也体现了 Inheried(遗传) 这一单词的特性,遗传只存在于父子。兄弟不存在遗传的关系。

这种数据共享的方式在某些场景还是很有用的,就比如说全局主题,字体大小,字体颜色的变更,只要在 App 根层级共享出这些配置数据,然后在触发数据改变之后,所有引用到这些共享数据的地方都会刷新,这换主题,字体是不是就很轻松,事实上 Theme.of(context).primaryColor 之流就是这么干的。

以上就是有关InheritedWidget的使用。

自己也是从事Android开发5年有余了;整理了一些Android开发技术核心笔记和面经题纲,有关更多Android开发进阶技术资料、面经题纲、核心技术笔记; 想要进阶自己、拿高薪的同学请私信我回复“核心笔记”或“面试”领取!


当前名称:fluttertree,fluttertree梗
URL链接:http://cdxtjz.com/article/phhdep.html

其他资讯