189 8069 5689

Spark笔记整理(四):SparkRDD算子实战

[TOC]

我们提供的服务有:成都网站设计、网站制作、微信公众号开发、网站优化、网站认证、许昌ssl等。为上千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的许昌网站制作公司


Spark算子概述

RDD:弹性分布式数据集,是一种特殊集合、支持多种来源、有容错机制、可以被缓存、支持并行操作,一个RDD代表多个分区里的数据集。

RDD有两种操作算子:

  • Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住了数据集的逻辑操作
  • Action(执行):触发Spark作业的运行,真正触发转换算子的计算

需要说明的是,下面写的scala代码,其实都是可以简写的,但是为了方便理解,我都没有简写,因为要简写的话对于scala来说真的就是一句话的事情了。

另外如果是在本地环境进行开发,那么需要添加相关依赖:


    org.scala-lang
    scala-library
    2.10.5


    org.apache.spark
    spark-core_2.10
    1.6.2

Transformation算子

概述

需要操作的Transformation算子说明如下:

  • map(func)

    返回一个新的分布式数据集,由每个原元素经过func函数转换后组成

  • filter(func)

    返回一个新的数据集,由经过func函数后返回值为true的原元素组成

  • flatMap(func)

    类似于map,但是每一个输入元素,会被映射为0到多个输出元素(因此,func函数的返回值是一个Seq,而不是单一元素)

  • sample(withReplacement, frac, seed)

    根据给定的随机种子seed,随机抽样出数量为frac的数据

  • union(otherDataset)

    返回一个新的数据集,由原数据集和参数联合而成

  • groupByKey([numTasks])

    在一个由(K,V)对组成的数据集上调用,返回一个(K,Seq[V])对的数据集。注意:默认情况下,使用8个并行任务进行分组,你可以传入numTask可选参数,根据数据量设置不同数目的Task

  • reduceByKey(func, [numTasks])

    在一个(K,V)对的数据集上使用,返回一个(K,V)对的数据集,key相同的值,都被使用指定的reduce函数聚合到一起。和groupbykey类似,任务的个数是可以通过第二个可选参数来配置的。

  • join(otherDataset, [numTasks])

    在类型为(K,V)和(K,W)类型的数据集上调用,返回一个(K,(V,W))对,每个key中的所有元素都在一起的数据集

map

测试代码如下:

object _02SparkTransformationOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName(_02SparkTransformationOps.getClass.getSimpleName)
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
        val sc = new SparkContext(conf)

        transformationOps1(sc)

        sc.stop()
    }
    /**
      * 1、map:将集合中每个元素乘以7
      * map(func):返回一个新的分布式数据集,由每个原元素经过func函数转换后组成
      */
    def transformationOps1(sc:SparkContext): Unit = {
        val list = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
        val listRDD = sc.parallelize(list)
        val retRDD = listRDD.map(num => num * 7)
        retRDD.foreach(num => println(num))
    }
}

执行结果如下:

42
7
49
14
56
21
63
28
70
35

filter

测试代码如下:

object _02SparkTransformationOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName(_02SparkTransformationOps.getClass.getSimpleName)
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
        val sc = new SparkContext(conf)

        transformationOps2(sc)

        sc.stop()
    }
    /**
      * 2、filter:过滤出集合中的奇数
      * filter(func): 返回一个新的数据集,由经过func函数后返回值为true的原元素组成
      *
      * 一般在filter操作之后都要做重新分区(因为可能数据量减少了很多)
      */
    def transformationOps2(sc:SparkContext): Unit = {
        val list = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
        val listRDD = sc.parallelize(list)
        val retRDD = listRDD.filter(num => num % 2 == 0)
        retRDD.foreach(println)
    }
}

输出结果如下:

6
2
8
4
10

flatMap

测试代码如下:

object _02SparkTransformationOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName(_02SparkTransformationOps.getClass.getSimpleName)
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
        val sc = new SparkContext(conf)

        transformationOps3(sc)

        sc.stop()
    }
    /**
      * 3、flatMap:将行拆分为单词
      * flatMap(func):类似于map,但是每一个输入元素,
      * 会被映射为0到多个输出元素(因此,func函数的返回值是一个Seq,而不是单一元素)
      */
    def transformationOps3(sc:SparkContext): Unit = {
        val list = List("hello you", "hello he", "hello me")
        val listRDD = sc.parallelize(list)
        val wordsRDD = listRDD.flatMap(line => line.split(" "))
        wordsRDD.foreach(println)
    }
}

输出结果如下:

hello
hello
he
you
hello
me

sample

测试代码如下:

object _02SparkTransformationOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName(_02SparkTransformationOps.getClass.getSimpleName)
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
        val sc = new SparkContext(conf)

        transformationOps4(sc)

        sc.stop()
    }
    /**
      * 4、sample:根据给定的随机种子seed,随机抽样出数量为frac的数据
      * sample(withReplacement, frac, seed): 根据给定的随机种子seed,随机抽样出数量为frac的数据
      * 抽样的目的:就是以样本评估整体
      * withReplacement:
      *     true:有放回的抽样
      *     false:无放回的抽样
      * frac:就是样本空间的大小,以百分比小数的形式出现,比如20%,就是0.2
      *
      * 使用sample算子计算出来的结果可能不是很准确,1000个数,20%,样本数量在200个左右,不一定为200
      *
      * 一般情况下,使用sample算子在做spark优化(数据倾斜)的方面应用最广泛
      */
    def transformationOps4(sc:SparkContext): Unit = {
        val list = 1 to 1000
        val listRDD = sc.parallelize(list)
        val sampleRDD = listRDD.sample(false, 0.2)

        sampleRDD.foreach(num => print(num + " "))
        println
        println("sampleRDD count: " + sampleRDD.count())
        println("Another sampleRDD count: " + sc.parallelize(list).sample(false, 0.2).count())
    }
}

输出结果如下:

sampleRDD count: 219
Another sampleRDD count: 203

union

测试代码如下:

object _02SparkTransformationOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName(_02SparkTransformationOps.getClass.getSimpleName)
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
        val sc = new SparkContext(conf)

        transformationOps5(sc)

        sc.stop()
    }
    /**
      * 5、union:返回一个新的数据集,由原数据集和参数联合而成
      * union(otherDataset): 返回一个新的数据集,由原数据集和参数联合而成
      * 类似数学中的并集,就是sql中的union操作,将两个集合的所有元素整合在一块,包括重复元素
      */
    def transformationOps5(sc:SparkContext): Unit = {
        val list1 = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
        val list2 = List(7, 8, 9, 10, 11, 12)
        val listRDD1 = sc.parallelize(list1)
        val listRDD2 = sc.parallelize(list2)
        val unionRDD = listRDD1.union(listRDD2)

        unionRDD.foreach(println)
    }
}

输出结果如下:

1
6
2
7
3
8
4
9
5
10
7
8
9
10
11
12

groupByKey

测试代码如下:

object _02SparkTransformationOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName(_02SparkTransformationOps.getClass.getSimpleName)
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
        val sc = new SparkContext(conf)

        transformationOps6(sc)

        sc.stop()
    }
    /**
      * 6、groupByKey:对数组进行 group by key操作
      * groupByKey([numTasks]): 在一个由(K,V)对组成的数据集上调用,返回一个(K,Seq[V])对的数据集。
      * 注意:默认情况下,使用8个并行任务进行分组,你可以传入numTask可选参数,根据数据量设置不同数目的Task
      * mr中:
      * --->map操作--->--->shuffle--->--->
      * groupByKey类似于shuffle操作
      *
      * 和reduceByKey有点类似,但是有区别,reduceByKey有本地的规约,而groupByKey没有本地规约,所以一般情况下,
      * 尽量慎用groupByKey,如果一定要用的话,可以自定义一个groupByKey,在自定义的gbk中添加本地预聚合操作
      */
    def transformationOps6(sc:SparkContext): Unit = {
        val list = List("hello you", "hello he", "hello me")
        val listRDD = sc.parallelize(list)
        val wordsRDD = listRDD.flatMap(line => line.split(" "))
        val pairsRDD:RDD[(String, Int)] = wordsRDD.map(word => (word, 1))
        pairsRDD.foreach(println)
        val gbkRDD:RDD[(String, Iterable[Int])] = pairsRDD.groupByKey()
        println("=============================================")
        gbkRDD.foreach(t => println(t._1 + "..." + t._2))
    }
}

输出结果如下:

(hello,1)
(hello,1)
(you,1)
(he,1)
(hello,1)
(me,1)
=============================================
you...CompactBuffer(1)
hello...CompactBuffer(1, 1, 1)
he...CompactBuffer(1)
me...CompactBuffer(1)

reduceByKey

测试代码如下:

object _02SparkTransformationOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName(_02SparkTransformationOps.getClass.getSimpleName)
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
        val sc = new SparkContext(conf)

        transformationOps7(sc)

        sc.stop()
    }
    /**
      * 7、reduceByKey:统计每个班级的人数
      * reduceByKey(func, [numTasks]): 在一个(K,V)对的数据集上使用,返回一个(K,V)对的数据集,
      * key相同的值,都被使用指定的reduce函数聚合到一起。和groupbykey类似,任务的个数是可以通过第二个可选参数来配置的。
      *
      * 需要注意的是还有一个reduce的操作,其为action算子,并且其返回的结果只有一个,而不是一个数据集
      * 而reduceByKey是一个transformation算子,其返回的结果是一个数据集
      */
    def transformationOps7(sc:SparkContext): Unit = {
        val list = List("hello you", "hello he", "hello me")
        val listRDD = sc.parallelize(list)
        val wordsRDD = listRDD.flatMap(line => line.split(" "))
        val pairsRDD:RDD[(String, Int)] = wordsRDD.map(word => (word, 1))
        val retRDD:RDD[(String, Int)] = pairsRDD.reduceByKey((v1, v2) => v1 + v2)

        retRDD.foreach(t => println(t._1 + "..." + t._2))
    }
}

输出结果如下:

you...1
hello...3
he...1
me...1

join

测试代码如下:

object _02SparkTransformationOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName(_02SparkTransformationOps.getClass.getSimpleName)
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
        val sc = new SparkContext(conf)

        transformationOps8(sc)

        sc.stop()
    }
    /**
      * 8、join:打印关联的组合信息
      * join(otherDataset, [numTasks]): 在类型为(K,V)和(K,W)类型的数据集上调用,返回一个(K,(V,W))对,每个key中的所有元素都在一起的数据集
      * 学生基础信息表和学生考试成绩表
      * stu_info(sid ,name, birthday, class)
      * stu_score(sid, chinese, english, math)
      *
      * *  Serialization stack:
    - object not serializable
        这种分布式计算的过程,一个非常重要的点,传递的数据必须要序列化

        通过代码测试,该join是等值连接(inner join)
        A.leftOuterJoin(B)
            A表所有的数据都包涵,B表中在A表没有关联的数据,显示为null
        之后执行一次filter就是join的结果
      */
    def transformationOps8(sc: SparkContext): Unit = {
        val infoList = List(
            "1,钟  潇,1988-02-04,bigdata",
            "2,刘向前,1989-03-24,linux",
            "3,包维宁,1984-06-16,oracle")
        val scoreList = List(
            "1,50,21,61",
            "2,60,60,61",
            "3,62,90,81",
            "4,72,80,81"
        )

        val infoRDD:RDD[String] = sc.parallelize(infoList)
        val scoreRDD:RDD[String] = sc.parallelize(scoreList)

        val infoPairRDD:RDD[(String, Student)] = infoRDD.map(line => {
            val fields = line.split(",")
            val student = new Student(fields(0), fields(1), fields(2), fields(3))
            (fields(0), student)
        })
        val scorePairRDD:RDD[(String, Score)] = scoreRDD.map(line => {
            val fields = line.split(",")
            val score = new Score(fields(0), fields(1).toFloat, fields(2).toFloat, fields(3).toFloat)
            (fields(0), score)
        })

        val joinedRDD:RDD[(String, (Student, Score))] = infoPairRDD.join(scorePairRDD)
        joinedRDD.foreach(t => {
            val sid = t._1
            val student = t._2._1
            val score = t._2._2
            println(sid + "\t" + student + "\t" + score)
        })

        println("=========================================")

        val leftOuterRDD:RDD[(String, (Score, Option[Student]))] = scorePairRDD.leftOuterJoin(infoPairRDD)
        leftOuterRDD.foreach(println)

    }
}

输出结果如下:

3   3 包维宁 1984-06-16 oracle 3 62.0 90.0 81.0
2   2 刘向前 1989-03-24 linux  2 60.0 60.0 61.0
1   1 钟  潇 1988-02-04 bigdata   1 50.0 21.0 61.0
=========================================
(4,(4 72.0 80.0 81.0,None))
(3,(3 62.0 90.0 81.0,Some(3 包维宁 1984-06-16 oracle)))
(2,(2 60.0 60.0 61.0,Some(2 刘向前 1989-03-24 linux)))
(1,(1 50.0 21.0 61.0,Some(1 钟  潇 1988-02-04 bigdata)))

为了更好进行操作和理解,下面提供一个Spark-shell的经典例子:

scala> val infoList = List("1,zhongxiang","2,liuxiangqian","3,baweining")
infoList: List[String] = List(1,zhongxiang, 2,liuxiangqian, 3,baweining)

scala> val infoRDD = sc.parallelize(infoList)
infoRDD: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[31] at parallelize at :29

scala> val infoPairRDD = infoRDD.map(line => (line.split(",")(0),line.split(",")(1)))
infoPairRDD: org.apache.spark.rdd.RDD[(String, String)] = MapPartitionsRDD[32] at map at :31

scala> val scoreList = List("1,50-21-61","2,60-60-61","3,62-90-81","4,72-80-81")
scoreList: List[String] = List(1,50-21-61, 2,60-60-61, 3,62-90-81, 4,72-80-81)

scala> val scoreRDD = sc.parallelize(scoreList)
scoreRDD: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[33] at parallelize at :29

scala> val scorePairRDD = scoreRDD.map(line => (line.split(",")(0),line.split(",")(1)))
scorePairRDD: org.apache.spark.rdd.RDD[(String, String)] = MapPartitionsRDD[34] at map at :31

scala>

scala> val joinedRDD = infoPairRDD.join(scorePairRDD)
joinedRDD: org.apache.spark.rdd.RDD[(String, (String, String))] = MapPartitionsRDD[37] at join at :39

scala> joinedRDD.foreach(t => println(t._1 + "\t" + "name:" + t._2._1 + "\t" + "score:" + t._2._2))
1   name:zhongxiang score:50-21-61
3   name:baweining  score:62-90-81
2   name:liuxiangqian   score:60-60-61

有读者反应上面的案例还是过于复杂化,于是又写了下面这个demo,相信就很好理解了:

scala> val infoPairRDD = sc.parallelize(Seq((1,"leaf"),(2,"xpleaf"),(3,"yyh")))
infoPairRDD: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[41] at parallelize at :27
scala> infoPairRDD.foreach(println)
(2,xpleaf)
(1,leaf)
(3,yyh)

scala> val scorePairRDD = sc.parallelize(Seq((1, 93), (2, 91), (3, 86), (4, 97)))
scorePairRDD: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[44] at parallelize at :27
scala> scorePairRDD.foreach(println)
(1,93)
(3,86)
(2,91)
(4,97)

scala> val joinedRDD = infoPairRDD.join(scorePairRDD)
joinedRDD: org.apache.spark.rdd.RDD[(Int, (String, Int))] = MapPartitionsRDD[53] at join at :31
scala> joinedRDD.foreach(println)
(2,(xpleaf,91))
(1,(leaf,93))
(3,(yyh,86))

1.应该很清楚地理解到,spark中的join其实跟sql中的join是类似的,infoPairRDD和scorePairRDD就可以理解为两张表,而RDD中的每一条数据就可以理解为表中的一条数据,上面的盒子,相当于两个表中都有相同的id,需要将两张表中的数据根据id来进行连接,因此,在上面演示的等值连接中,左表的每一条数据,只要左表有出现的id,在右表也有相同的id,那么就会进行连接操作,当然,这是等值连接的情况,对于左外连接,则是不管右表有没有该id出现,左边的数据都会显示出来。

2.spark在进行开发级别的调优时,要尽可能避免出现shuffle操作,对于join操作,尤其需要注意的是大小表join问题,如果采用大表.join(小表)的join操作,实际上,在网络上或者节点之间传输的是小表的数据,这不会有太大的性能问题,但是如果是采用小表.join(大表),那么在网络上或者节点之间就会传输大量的数据,这会造成很严重的性能问题。所以,当需要执行join操作时,请一定要警惕大小表的问题。
3.看下面的两份RDD数据,显然是从infoRDD的分区传输到scoreRDD的分区成本更低:

infoRDD:
(1,"info")
(2,"info")
(3,"info")
(4,"info")

scoreRDD:
(1,"score1")
(1,"score2")
(1,"score3")
(1,"score4")
(1,"score5")

(2,"score1")
(2,"score2")
(2,"score3")
(2,"score4")
(2,"score5")

(3,"score1")
(3,"score2")
(3,"score3")
(3,"score4")
(3,"score5")

(4,"score1")
(4,"score2")
(4,"score3")
(4,"score4")
(4,"score5")

sortByKey

测试代码如下:

object _02SparkTransformationOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName(_02SparkTransformationOps.getClass.getSimpleName)
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
        val sc = new SparkContext(conf)

        transformationOps7(sc)

        sc.stop()
    }
    /**
      * sortByKey:将学生身高进行(降序)排序
      *     身高相等,按照年龄排(升序)
      */
    def transformationOps9(sc: SparkContext): Unit = {
        val list = List(
            "1,李  磊,22,175",
            "2,刘银鹏,23,175",
            "3,齐彦鹏,22,180",
            "4,杨  柳,22,168",
            "5,敦  鹏,20,175"
        )
        val listRDD:RDD[String] = sc.parallelize(list)

        /*  // 使用sortBy操作完成排序
        val retRDD:RDD[String] = listRDD.sortBy(line => line, numPartitions = 1)(new Ordering[String] {
            override def compare(x: String, y: String): Int = {
                val xFields = x.split(",")
                val yFields = y.split(",")
                val xHgiht = xFields(3).toFloat
                val yHgiht = yFields(3).toFloat
                val xAge = xFields(2).toFloat
                val yAge = yFields(2).toFloat
                var ret = yHgiht.compareTo(xHgiht)
                if (ret == 0) {
                    ret = xAge.compareTo(yAge)
                }
                ret
            }
        } ,ClassTag.Object.asInstanceOf[ClassTag[String]])
        */
        // 使用sortByKey完成操作,只做身高降序排序
        val heightRDD:RDD[(String, String)] = listRDD.map(line => {
            val fields = line.split(",")
            (fields(3), line)
        })
        val retRDD:RDD[(String, String)] = heightRDD.sortByKey(ascending = false, numPartitions = 1)   // 需要设置1个分区,否则只是各分区内有序
        retRDD.foreach(println)

        // 使用sortByKey如何实现sortBy的二次排序?将上面的信息写成一个java对象,然后重写compareTo方法,在做map时,key就为该对象本身,而value可以为null

    }
}

输出结果如下:

(180,3,齐彦鹏,22,180)
(175,1,李  磊,22,175)
(175,2,刘银鹏,23,175)
(175,5,敦  鹏,20,175)
(168,4,杨  柳,22,168)

下面是一个快速入门的demo:

scala> val rdd = sc.parallelize(Seq((1,"one"),(2,"two"),(3,"three")))
rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[10] at parallelize at :21

scala> rdd.sortByKey(true, 1).foreach(println)
(1,one)
(2,two)
(3,three)

combineByKey与aggregateByKey

下面的代码分别使用combineByKey和aggregateByKey来模拟groupByKey和reduceBykey,所以是有4个操作,只要把combineByKey模拟groupByKey的例子掌握了,其它三个相对就容易许多了。

整体来说理解不太容易,但是非常重要,所以一定是要掌握的!


/**
  * spark的transformation操作:
  * aggregateByKey
  * combineByKey
  *
  * 使用combineByKey和aggregateByKey模拟groupByKey和reduceByKey
  *
  * 通过查看源码,我们发现aggregateByKey底层,还是combineByKey
  *
  * 问题:combineByKey和aggregateByKey的区别?
  * aggregateByKey是柯里化形式的,目前底层源码还没时间去分析,所知道的区别是这个
  */
object _03SparkTransformationOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName(_03SparkTransformationOps.getClass.getSimpleName)
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)
        val sc = new SparkContext(conf)

//        combineByKey2GroupByKey(sc)
//        combineByKey2ReduceByKey(sc)
//        aggregateByKey2ReduceByKey(sc)
        aggregateByKey2GroupByKey(sc)

        sc.stop()
    }

    /**
      * 使用aggregateByKey模拟groupByKey
      */
    def aggregateByKey2GroupByKey(sc: SparkContext): Unit = {
        val list = List("hello bo bo", "zhou xin xin", "hello song bo")
        val lineRDD = sc.parallelize(list)
        val wordsRDD = lineRDD.flatMap(line => line.split(" "))
        val pairsRDD = wordsRDD.map(word => (word, 1))

        val retRDD:RDD[(String, ArrayBuffer[Int])] = pairsRDD.aggregateByKey(ArrayBuffer[Int]()) (  // 这里需要指定value的类型为ArrayBuffer[Int]()
            (part, num) => {
                part.append(num)
                part
            },
            (part1, part2) => {
                part1.++=(part2)
                part1
            }
        )

        retRDD.foreach(println)
    }

    /**
      * 使用aggregateByKey模拟reduceByKey
      *   def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,
      combOp: (U, U) => U): RDD[(K, U)]
      (zeroValue: U)就对应的是combineByKey中的第一个函数的返回值
      seqOp 就对应的是combineByKey中的第二个函数,也就是mergeValue
      combOp 就对应的是combineByKey中的第三个函数,也就是mergeCombiners
      */
    def aggregateByKey2ReduceByKey(sc:SparkContext): Unit = {
        val list = List("hello bo bo", "zhou xin xin", "hello song bo")
        val lineRDD = sc.parallelize(list)
        val wordsRDD = lineRDD.flatMap(line => line.split(" "))
        val pairsRDD = wordsRDD.map(word => (word, 1))

        val retRDD:RDD[(String, Int)] = pairsRDD.aggregateByKey(0) (
            (partNum, num) => partNum + num,    // 也就是mergeValue
            (partNum1, partNum2) => partNum1 + partNum2 // 也就是mergeCombiners
        )

        retRDD.foreach(println)
    }

    /**
      * 使用reduceByKey模拟groupByKey
      */
    def combineByKey2ReduceByKey(sc:SparkContext): Unit = {
        val list = List("hello bo bo", "zhou xin xin", "hello song bo")
        val lineRDD = sc.parallelize(list)
        val wordsRDD = lineRDD.flatMap(line => line.split(" "))
        val pairsRDD = wordsRDD.map(word => (word, 1))

        /**
          * 对于createCombiner1   mergeValue1     mergeCombiners1
          * 代码的参数已经体现得很清楚了,其实只要理解了combineByKey模拟groupByKey的例子,这个就非常容易了
          */
        var retRDD:RDD[(String, Int)] = pairsRDD.combineByKey(createCombiner1, mergeValue1, mergeCombiners1)

        retRDD.foreach(println)
    }

    /**
      * reduceByKey操作,value就是该数值本身,则上面的数据会产生:
      * (hello, 1) (bo, 1)   (bo, 1)
      * (zhou, 1)  (xin, 1)  (xin, 1)
      * (hello, 1) (song, 1) (bo, 1)
      * 注意有别于groupByKey的操作,它是创建一个容器
      */
    def createCombiner1(num:Int):Int = {
        num
    }

    /**
      * 同一partition内,对于有相同key的,这里的mergeValue直接将其value相加
      * 注意有别于groupByKey的操作,它是添加到value到一个容器中
      */
    def mergeValue1(localNum1:Int, localNum2:Int): Int = {
        localNum1 + localNum2
    }

    /**
      * 将两个不同partition中的key相同的value值相加起来
      * 注意有别于groupByKey的操作,它是合并两个容器
      */
    def mergeCombiners1(thisPartitionNum1:Int, anotherPartitionNum2:Int):Int = {
        thisPartitionNum1 + anotherPartitionNum2
    }

    /**
      * 使用combineByKey模拟groupByKey
      */
    def combineByKey2GroupByKey(sc:SparkContext): Unit = {
        val list = List("hello bo bo", "zhou xin xin", "hello song bo")
        val lineRDD = sc.parallelize(list)
        val wordsRDD = lineRDD.flatMap(line => line.split(" "))
        val pairsRDD = wordsRDD.map(word => (word, 1))

        // 输出每个partition中的map对
        pairsRDD.foreachPartition( partition => {
            println("<=========partition-start=========>")
            partition.foreach(println)
            println("<=========partition-end=========>")
        })

        val gbkRDD:RDD[(String, ArrayBuffer[Int])] = pairsRDD.combineByKey(createCombiner, mergeValue, mergeCombiners)

        gbkRDD.foreach(println)

        // 如果要测试最后groupByKey的结果是在几个分区,可以使用下面的代码进行测试
        /*gbkRDD.foreachPartition(partition => {
            println("~~~~~~~~~~~~~~~~~~~~~~~~~~~")
            partition.foreach(println)
        })*/

    }

    /**
      * 初始化,将value转变成为标准的格式数据
      * 是在每个分区中进行的操作,去重后的key有几个,就调用次,
      * 因为对于每个key,其容器创建一次就ok了,之后有key相同的,只需要执行mergeValue到已经创建的容器中即可
      */
    def createCombiner(num:Int):ArrayBuffer[Int] = {
        println("----------createCombiner----------")
        ArrayBuffer[Int](num)
    }

    /**
      * 将key相同的value,添加到createCombiner函数创建的ArrayBuffer容器中
      * 一个分区内的聚合操作,将一个分区内key相同的数据,合并
      */
    def mergeValue(ab:ArrayBuffer[Int], num:Int):ArrayBuffer[Int] = {
        println("----------mergeValue----------")
        ab.append(num)
        ab
    }

    /**
      * 将key相同的多个value数组,进行整合
      * 分区间的合并操作
      */
    def mergeCombiners(ab1:ArrayBuffer[Int], ab2:ArrayBuffer[Int]):ArrayBuffer[Int] = {
        println("----------mergeCombiners----------")
        ab1 ++= ab2
        ab1
    }

}

/*
combineByKey模拟groupByKey的一个输出效果,可以很好地说明createCombiner、mergeValue和mergeCombiners各个阶段的执行时机:
<=========partition-start=========>
<=========partition-start=========>
(hello,1)
(zhou,1)
(bo,1)
(xin,1)
(bo,1)
(xin,1)
<=========partition-end=========>
(hello,1)
(song,1)
(bo,1)
<=========partition-end=========>
----------createCombiner----------
----------createCombiner----------
----------createCombiner----------
----------createCombiner----------
----------mergeValue----------
----------mergeValue----------
----------createCombiner----------
----------createCombiner----------
----------createCombiner----------
----------mergeCombiners----------
----------mergeCombiners----------
(song,ArrayBuffer(1))
(hello,ArrayBuffer(1, 1))
(bo,ArrayBuffer(1, 1, 1))
(zhou,ArrayBuffer(1))
(xin,ArrayBuffer(1, 1))
 */

Actions算子

概述

前面Transformationt算子的测试都是在本地开发环境中直接跑代码,这里Actions算子的测试主要在spark-shell中进行操作,因为会方便很多。

需要说明的Actions算子如下:

  • reduce(func)

    通过函数func聚集数据集中的所有元素。Func函数接受2个参数,返回一个值。这个函数必须是关联性的,确保可以被正确的并发执行

  • collect()

    在Driver的程序中,以数组的形式,返回数据集的所有元素。这通常会在使用filter或者其它操作后,返回一个足够小的数据子集再使用,直接将整个RDD集Collect返回,很可能会让Driver程序OOM

  • count()

    返回数据集的元素个数

  • take(n)

    返回一个数组,由数据集的前n个元素组成。注意,这个操作目前并非在多个节点上,并行执行,而是Driver程序所在机器,单机计算所有的元素(Gateway的内存压力会增大,需要谨慎使用)

  • first()

    返回数据集的第一个元素(类似于take(1))

  • saveAsTextFile(path)

    将数据集的元素,以textfile的形式,保存到本地文件系统,hdfs或者任何其它hadoop支持的文件系统。Spark将会调用每个元素的toString方法,并将它转换为文件中的一行文本

  • saveAsSequenceFile(path)

    将数据集的元素,以sequencefile的格式,保存到指定的目录下,本地系统,hdfs或者任何其它hadoop支持的文件系统。RDD的元素必须由key-value对组成,并都实现了Hadoop的Writable接口,或隐式可以转换为Writable(Spark包括了基本类型的转换,例如Int,Double,String等等)

  • foreach(func)

    在数据集的每一个元素上,运行函数func。这通常用于更新一个累加器变量,或者和外部存储系统做交互

reduce

通过函数func聚集数据集中的所有元素。Func函数接受2个参数,返回一个值。这个函数必须是关联性的,确保可以被正确的并发执行。

关于reduce的执行过程,可以对比scala中类似的reduce函数,相关说明可以参考我的scala整理的知识点。

scala> val list = List(1, 2, 3, 4, 5, 6)
list: List[Int] = List(1, 2, 3, 4, 5, 6)

scala> val listRDD = sc.parallelize(list)
listRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at :29

scala> val ret = listRDD.reduce((v1, v2) => v1 + v2)
...
ret: Int = 21

需要注意的是,不同于Transformation算子,其结果仍然是RDD,但是执行Actions算子之后,其结果不再是RDD,而是一个标量。

collect

在Driver的程序中,以数组的形式,返回数据集的所有元素。这通常会在使用filter或者其它操作后,返回一个足够小的数据子集再使用,直接将整个RDD集Collect返回,很可能会让Driver程序OOM,这点尤其需要注意。

scala> val list = List(1, 2, 3, 4, 5, 6)
list: List[Int] = List(1, 2, 3, 4, 5, 6)

scala> val listRDD = sc.parallelize(list)
listRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at :29

scala> val ret = listRDD.collect()
...
ret: Array[Int] = Array(1, 2, 3, 4, 5, 6)

count

返回数据集的元素个数。

scala> val list = List(1, 2, 3, 4, 5, 6)
list: List[Int] = List(1, 2, 3, 4, 5, 6)

scala> val listRDD = sc.parallelize(list)
listRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at :29

scala> val ret = listRDD.count()
...
ret: Long = 6

take

返回一个数组,由数据集的前n个元素组成。注意,这个操作目前并非在多个节点上,并行执行,而是Driver程序所在机器,单机计算所有的元素(Gateway的内存压力会增大,需要谨慎使用)。

scala> val list = List(1, 2, 3, 4, 5, 6)
list: List[Int] = List(1, 2, 3, 4, 5, 6)

scala> val listRDD = sc.parallelize(list)
listRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[5] at parallelize at :29

scala> listRDD.take(3)
...
res7: Array[Int] = Array(1, 2, 3)

first

返回数据集的第一个元素(类似于take(1))。

scala> val list = List(1, 2, 3, 4, 5, 6)
list: List[Int] = List(1, 2, 3, 4, 5, 6)

scala> val listRDD = sc.parallelize(list)
listRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[6] at parallelize at :29

scala> listRDD.first()
...
res8: Int = 1

saveAsTextFile

将数据集的元素,以textfile的形式,保存到本地文件系统,hdfs或者任何其它hadoop支持的文件系统。Spark将会调用每个元素的toString方法,并将它转换为文件中的一行文本。

scala> val list = List(1, 2, 3, 4, 5, 6)
list: List[Int] = List(1, 2, 3, 4, 5, 6)

scala> val listRDD = sc.parallelize(list)
listRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[7] at parallelize at :29

scala> listRDD.saveAsTextFile("file:///home/uplooking/data/spark/action")
...

可以在文件系统中查看到保存的文件:

[uplooking@uplooking01 action]$ pwd
/home/uplooking/data/spark/action
[uplooking@uplooking01 action]$ ls
part-00000  part-00001  part-00002  part-00003  _SUCCESS

其实可以看到,保存的跟Hadoop的格式是一样的。

当然因为我的spark集群中已经做了跟hadoop相关的配置,所以也可以把文件保存到hdfs中:

scala> listRDD.saveAsTextFile("hdfs://ns1/output/spark/action")
...

然后就可以在hdfs中查看到保存的文件:

[uplooking@uplooking01 action]$ hdfs dfs -ls /output/spark/action
18/04/27 10:27:55 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 5 items
-rw-r--r--   3 uplooking supergroup          0 2018-04-27 10:25 /output/spark/action/_SUCCESS
-rw-r--r--   3 uplooking supergroup          2 2018-04-27 10:25 /output/spark/action/part-00000
-rw-r--r--   3 uplooking supergroup          4 2018-04-27 10:25 /output/spark/action/part-00001
-rw-r--r--   3 uplooking supergroup          2 2018-04-27 10:25 /output/spark/action/part-00002
-rw-r--r--   3 uplooking supergroup          4 2018-04-27 10:25 /output/spark/action/part-00003

可以看到,保存的格式跟保存到本地文件系统是一样的。

foreach

在数据集的每一个元素上,运行函数func。这通常用于更新一个累加器变量,或者和外部存储系统做交互。

scala> val list = List(1, 2, 3, 4, 5, 6)
list: List[Int] = List(1, 2, 3, 4, 5, 6)

scala> val listRDD = sc.parallelize(list)
listRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[12] at parallelize at :29

scala> listRDD.foreach(println)
...

saveAsNewAPIHadoopFile

也就是将数据保存到Hadoop HDFS中,但是需要注意的是,前面使用saveAsTextFile也可以进行相关操作,其使用的就是saveAsNewAPIHadoopFile或者saveAsHadoopFile这两个API,而其两者的区别是:

  • saveAsHadoopFile的OutputFormat使用的:org.apache.hadoop.mapred中的早期的类
  • saveAsNewAPIHadoopFile的OutputFormat使用的:org.apache.hadoop.mapreduce中的新的类。但不管使用哪一个,都是可以完成工作的。

测试代码如下:

package cn.xpleaf.bigdata.spark.scala.core.p2

import org.apache.hadoop.io.{IntWritable, Text}
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat
import org.apache.spark.{SparkConf, SparkContext}

/**
  * Spark算子操作之Action
  *     saveAsNewAPIHAdoopFile
  *     * saveAsHadoopFile
  * 和saveAsNewAPIHadoopFile的唯一区别就在于OutputFormat的不同
  * saveAsHadoopFile的OutputFormat使用的:org.apache.hadoop.mapred中的早期的类
  * saveAsNewAPIHadoopFile的OutputFormat使用的:org.apache.hadoop.mapreduce中的新的类
  * 使用哪一个都可以完成工作
  *
  * 前面在使用saveAsTextFile时也可以保存到hadoop文件系统中,注意其源代码也是使用上面的操作的
  *
  *   Caused by: java.net.UnknownHostException: ns1
    ... 35 more
  找不到ns1,因为我们在本地没有配置,无法正常解析,就需要将hadoop的配置文件信息给我们加载进来
    hdfs-site.xml.heihei,core-site.xml.heihei
  */
object _05SparkActionOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName(_05SparkActionOps.getClass.getSimpleName)
        val sc = new SparkContext(conf)

        val list = List("hello you", "hello he", "hello me")
        val listRDD = sc.parallelize(list)
        val pairsRDD = listRDD.map(word => (word, 1))
        val retRDD = pairsRDD.reduceByKey((v1, v2) => v1 + v2)

        retRDD.saveAsNewAPIHadoopFile(
            "hdfs://ns1/spark/action",      // 保存的路径
            classOf[Text],                      // 相当于mr中的k3
            classOf[IntWritable],               // 相当于mr中的v3
            classOf[TextOutputFormat[Text, IntWritable]]    // 设置(k3, v3)的outputFormatClass
        )

    }
}

之后我们可以在hdfs中查看到相应的文件输出:

[uplooking@uplooking01 ~]$ hdfs dfs -ls /spark/action               
18/04/27 12:07:49 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 3 items
-rw-r--r--   3 Administrator supergroup          0 2018-04-27 12:07 /spark/action/_SUCCESS
-rw-r--r--   3 Administrator supergroup         13 2018-04-27 12:07 /spark/action/part-r-00000
-rw-r--r--   3 Administrator supergroup         11 2018-04-27 12:07 /spark/action/part-r-00001
[uplooking@uplooking01 ~]$ hdfs dfs -text /spark/action/part-r-00000
18/04/27 12:08:06 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
hello   3
me      1
[uplooking@uplooking01 ~]$ hdfs dfs -text /spark/action/part-r-00001
18/04/27 12:08:11 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
you     1
he      1

宽依赖和窄依赖

窄依赖(narrow dependencies)

子RDD的每个分区依赖于常数个父分区(与数据规模无关)
输入输出一对一的算子,且结果RDD的分区结构不变。主要是map/flatmap
输入输出一对一的算子,但结果RDD的分区结构发生了变化,如union/coalesce
从输入中选择部分元素的算子,如filter、distinct、substract、sample

宽依赖(wide dependencies)

子RDD的每个分区依赖于所有的父RDD分区
对单个RDD基于key进行重组和reduce,如groupByKey,reduceByKey
对两个RDD基于key进行join和重组,如join
经过大量shuffle生成的RDD,建议进行缓存。这样避免失败后重新计算带来的开销。

注意:reduce是一个action,和reduceByKey完全不同。

关于宽依赖和窄依赖,《Hadoop与大数据挖掘》书本上的说明非常精简,但是理解起来也是不错的,可以参考一下,当然,这本书的Spark内容就写得非常少了。


当前题目:Spark笔记整理(四):SparkRDD算子实战
URL标题:http://cdxtjz.com/article/pjgjjc.html

其他资讯